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INTRODUCTION

From 15 October to 9 November 1990, the Korea Ocean Research and Development
Institute (KORDI) and the U.S. Geological Survey (USGS) participated in a cooperative cruise
(F11-90-CP) to the Federated States of Micronesia (FSM; Figs. 1-3). Eight scientists from
KORD], eleven from the USGS, and one observer from the FSM comprised the scientific staff
(Table 1). The main objectives of the cruise were: 1. To determine the geological, oceanographic,
and geochemical controls on the origin and evolution of Co-rich Fe-Mn oxyhydroxide crusts that
occur on seamounts in the FSM Exclusive Economic Zone (EEZ), 2. Determine the origin of
western Caroline Ridge and its potential for marine mineral deposits, 3. Complete a
reconnaissance survey for hydrothermal Mn (and associated metals) and epithermal gold
mineralization of the Yap arc, and 4. Study the effects of the collision of Caroline Ridge with the
Yap arc.

Shipboard operations comprised 18 stations where 24 dredges and 11 CTD-oxygen
profiles in the water column were taken (Table 2). In addition, 2577 km of 3.5 and 10 kHz
bathymetry, single-channel 195 in3 airgun, gravity, and magnetic surveys were completed (Table
3). This report presents all shipboard data and land-based laboratory data, including: 1. Maps
with track lines, seismic-gravity-magnetic lines, stations, and bathymetry; 2. Location maps with
geographic names; 3. Seismic, gravity, magnetic, and bathymetric profiles; 4. Temperature,
oxygen, and salinity profiles of the water column; 5. Paleontological age dates of sediments and
sedimentary rocks; 6. Descriptions of ferromanganese (Fe-Mn) and manganese (Mn) deposits and
substrate rocks; 7. Mineralogy and major, minor, Pt-group, Au, and rare earth element chemistry
of Fe-Mn and Mn deposits; 8. Statistical analyses of chemical compositions of Fe-Mn and Mn
deposits; 9. Mineralogy and major element and Au compositions of substrate rocks; and 10.
Discussions and comparisons with other data.

Dredges were collected from most of the physiographic and tectonic provinces that occur
within the EEZ of the FSM. Three dredge hauls were recovered from two Cretaceous seamounts
(Pali and Namonuito) and three dredges from two Tertiary seamounts (Sorol and Olapahd) located
between Pohnpei Island and Yap arc (Figs. 1, 2; Table 2). Ten dredge hauls were recovered from
Caroline Ridge and associated troughs located west of Chuuk Atoll (formerly called Truk Atoll).
The age of this part of Caroline Ridge is probably Oligocene. One dredge haul was recovered from
the north end of Eauripik Rise, where it abuts Caroline Ridge. Six dredge hauls were recovered
from the Neogene Yap volcanic arc.

Pali, Olapahd, and Luhk seamounts were named by the FSM Government in Pohnpei.
Names for other previously unnamed features discussed here were taken from nearby atolls or
submarine features with well established names and are used informally.

GEOLOGICAL SETTING

FSM is divided into four states: Kosrae, Pohnpei, Chuuk, and Yap, from east to west.
The main tectonic and physiographic features of the FSM EEZ include Caroline Ridge and
associated narrow troughs, notably Sorol Trough; Yap trench-volcanic arc system; the
southernmost end of the Mariana trench-arc system; southeastern edge of the Philippine Sea back-
arc basin; isolated Cretaceous mid-plate seamounts; and the northernmost ends of Eauripik Rise
and Mussau Trough (Figs. 1, 2). These tectonic ridges and troughs commonly display complex
interactions, for example where Caroline Ridge collides with the Yap arc and where Eauripik Rise
and Mussau Trough impinge on Caroline Ridge.

Caroline Ridge can be divided into three segments. The eastern third of the ridge extends
from Kosrae Island to Chuuk Atoll and trends northwestward. This segment consists of isolated
atolls and seamounts and has been shown to comprise a hot spot trace that was active between 12
and 1 Ma (Mattey, 1982; Keating et al., 1984). The central segment extends from Chuuk Atoll to



Ifalik Atoll-Tarang Bank and trends east-west. This segment consists of large carbonate(?) banks
and atolls and is generally of less than 2500 m water depth. The western third of Caroline Ridge
extends from Ifalik Atoll-Tarang Bank to the Yap trench|and trends northwestward. This segment
consists of a large shallow-water (<2500 m) ridge bounded by, and cut by, narrow troughs that
represent strike-slip faults (southern margin; Hamilton, 1985), normal faults (northern margin;
Andrews, 1971), and small spreading basins. Seismic profiles presented here show that both the
north and south flanks of Caroline Ridge are block faulted. The origin of the western two-thirds of
Caroline Ridge is unknown. West Caroline Ridge was proposed to be a relict island arc by Bracey
and Andrews (1974). However, Hamilton (1985) disagreed with their interpretation and
speculated that the ridge represents a leaky transform fault that connects the Mussau and Mariana
trenches. Perfit and Fornari (1982) called on a combination of leaky transform fault and hot spot
volcanism to form the ridge. Hegarty and Weissel (1988) suggested that the western part of
Caroline Ridge, as well as Eauripik Rise, formed when a melting anomaly passed beneath the
Pacific plate during the late Oligocene. Our work indicates that west Caroline Ridge, Sorol
Trough, and associated topographic features may represent an extinct(?) spreading center-
transform fault system. Vogt et al. (1976) suggested this possibility in passing, but provided no
corroborative evidence. Eauripik Rise may also be an extinct spreading center, one of three in the
Caroline Basin, which is located south of Caroline Ridge (Winterer et al., 1971; Erlandson et al.,
1976; Mammerickx, 1978).

The Yap arc and trench represent an Oligoccne(?) and Neogene convergent plate margin,
but one that is distinct in many ways from other west and southwest Pacific arcs (Cole et al., 1960;
Johnson et al., 1960; Hawkins and Batiza, 1977). For example, the distance between the arc
summit and trench axis is very narrow and subduction may have ended in the late Miocene. Also,
many of the rocks recovered from the arc (inner trench wall, summit, and summit islands) are
metamorphic rocks of greenschist and amphibolite grade (Johnson et al., 1960; Shiraki, 1971).
Many of the volcanic rocks have an oceanic crust c:gpositional signature and thus may be

obducted oceanic crust (Hawkins and Batiza, 1977; Working group, 1977). Other rocks belong to
the calc-alkaline and island arc tholeiite series (Beccaluva et al., 1980; Crawford et al., 1986).
Rocks dredged from the outer trench slope have a MORB-like composition and are about 7 m.y.
old (Beccaluva et al., 1980). Hydrothermal mineralization of Quaternary sandstones collected by
us from the central Yap arc indicate that the suggestions that subduction ended in the late Miocene
and that back-arc basin crust was obducted onto the volcanic arc need to be modified, or at least
must account for Quaternary hydrothermal activity at the summit of the arc (Hawkins and Batiza,
1977). |

|

METHODS }

The two main types of shipboard navigation used were GPS (the U.S. Navy’s Global
Positioning System) and an integrated navigation system to do direct ranging on Loran C stations
(Gann, 1988). The Japanese Loran chain was used while in the FSM area. Seismic surveys
included 3.5 and 10 kHz bathymetry and analog and digital single-channel seismics collected with
a 195 in3 airgun. The velocity of sound used to calculate sediment thicknesses was 1500 my/s.
Sound velocity in sediment typically ranges from 1500-2200 m/s for the upper 1500 m of section.
CTD-oxygen profiles and water samples were taken with a Neil Brown rosette. One to four water
samples were taken per CTD cast and analyzed for oxygen content to calibrate the oxygen profiles.
Standard Winkler titrations were performed to determine oxygen contents.

X ray diffraction analyses were conducted on a Phillips diffractometer, with Ni-filtered,
Cu-ko radiation and a curved-crystal carbon monochromator. Abundances of major oxides in
substrate rocks were determined by X ray fluorescence spectroscopy (Taggart et al., 1987), Fe(Il)
by colorimetric titration (Peck, 1964), CO, by coulometric titration (Engleman et al., 1985), HO+
by water evolved at 950°C as determined coulometrically by Karl-Fischer titration (Jackson et al.,
1987), and H20- by sample weight difference at 110°C for greater than 1 hour (Shapiro, 1975).
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The low totals for the phosphorite samples occur because fluorine and sulfur were not determined
and therefore left out of the totals. High fluorine and sulfur contents are typical of marine
carbonate fluorapatites (Cullen and Burnett, 1987; Burnett et al., 1987). For ferromanganese
oxides, the concentrations of most major and minor elements were determined by inductively
coupled plasma-atomic emission spectrometry, except those of K, Zn, and Pb, which were
determined by flame atomic-absorption spectroscopy, and those of As, Cr, and Cd determined by
graphite-furnace atomic absorption spectroscopy on air dried samples (Aruscavage et al., 1989).
Concentrations of platinum-group elements for Fe-Mn deposits and substrate rocks and rare earth
elements for Fe-Mn deposits were determined by inductively coupled plasma-mass spectrometry
(Lichte et al., 1987a,b). Gold contents for Fe-Mn deposits and substrate rocks were determined
by chemical separation and graphite-furnace atomic absorption spectroscopy (O’Leary and Meier,
1986).

For Q-mode factor analysis, each variable percentage was scaled to the percent of the
maximum value before the values were row normalized and the cosine theta coefficients calculated.
The factors were derived from orthogonal rotations of the principal component eigenvectors using
the Varimax method (Klovan and Imbrie, 1971). All communalities are 20.97. The usual Pearson
product moment correlation coefficient was used to calculate the correlation coefficient matrices.

BATHYMETRY AND GEOPHYSICS

Generally, two seismic lines were run at nearly right angles across each seamount and
guyot studied in order to choose dredge sites. However, two lines are not enough to produce
bathymetric maps. Our more detailed seismic and bathymetric survey, along with data from the
National Geophysical Data Center, allowed us to construct a bathymetric map of west Caroline
Ridge (Figs. 7-9; Appendices 1, 2). West Caroline Ridge is composed of northwest-southeast
oriented ridges and troughs (Flgs 7-9; Appendix 2); it joins the western end of the northeast
oriented central Caroline Ridge at nearly aright angle in the area of Ifalik Atoll, Gamen Reef, and
Tarang Bank (Fig. 7; Appendix 2). West Caroline Ridge proper is about 130 km wide and 630 km
long and has a summit platform supporting several islands: Ulithi Atoll, Fais Island, and Woleai
Atoll; several basins and troughs also characterize the summit area, the largest being Fais Trough.
The slope of the northern flank of the ridge is relatively gentle compared to the very steep south
flank, which is also the north wall of Sorol Trough. Sorol Trough is about 80 km wide and
narrows to the southeast. The trough is about 800 km long and is composed of a series of basins
that range between 4000 and 5000 m water depth. South of Sorol Trough is Sorol Ridge and the
north end of Eauripik Rise; the deep (>5000 m) Eauripik Trough separates the latter two ridges
(Fig. 7; Appendix 2) and joins Sorol Trough to the West Caroline Basin (Figs. 1, 7). Eauripik
Trough has an east-west orientation, unlike the northwest-southeast orientation of Sorol Trough,
west Caroline Ridge, and Sorol Ridge. Sorol Atoll and Eauripik Atoll sit on the northern margins
of Sorol Ridge and Eauripik Rise, respectively.

Airgun and 3.5 kHz Lines

In the following discussion, seismic reflection lines are grouped by geographic area. Each
airgun line number is followed (in parentheses) by the direction of the line shown in the figures,
e.g. (N-S) means the line is presented with north on the left and south on the right. The 3.5 kHz
line orientations are reversed in several areas as listed in the figure captions.

Pali Seamount was crossed by lines 1-3. On LINE 1 (S-N; Figs. 4, 24, 25) the sediment
thickness is variable and ranges from 400+ m adjacent to the base of the south flank to 200-300 m
over the crest to 100 m on the north flank. The volcanic basement is exposed in places. Line 1
shows a 350 nT magnetic anomaly across the northern half of the line and a 77 mgal gravity
anomaly centered over the seamount. LINE 2 (NW-SE; Figs. 4, 26, 27) crosses the northeastern
flank of Pali Seamount and shows about 100 m of sediment on the flank that thickens to about 200



'm at the base of the seamount. LINE 3 (W-E; Figs. 4, 2§, 29) crosses the entire seamount and
reveals about 300 m of abyssal sediment at the base of the seamount at each end of the line. The
profile shows an asymmetrical 217 nT magnetic anomaly that increases to the west. The gravity
anomaly of 129 mgal is symmetrically-centered over the seamount. The western flank of the
seamount was dredged, recovering predominantly hyaloclastite and phosphorite (Dredge D1, Table
6). The north and west flanks may be underlain by slump deposits.

i was crossed by lines 4-6. LINE |4 (W-E; Figs. 5, 30, 31) shows 200 m
of abyssal sediment beneath the eastern base of the guyot, 300 m beneath 'the western base, and
about 100 m blanketing the top of the guyot. The nearly sediment-free eastern flank was dredged,
recovering mudstone-siltstone, limestone, and phosphorite (Dredges D2, D3, Table 6). The guyot
is characterized by a large negative magnetic anomaly of 814 nT centered over the western half of
the guyot. The positive gravity anomaly is symmetrically centered over the feature. LINE 5 (SW-
NE; Figs. 5, 32, 33) shows a basement knoll on the northwest flank of the guyot. The basement
elsewhere on the line is veneered with less than 100 m of sediment. The central part of the line is
characterized by a 787 nT magnetic anomaly. The gravity anomaly mimics the topography and
-rises to 107 mgals forming a 117 mgal anomaly at the northeastern end of the line. LINE 6 (S-N;
| Figs. 5, 34, 35) shows about 100 m of sediment on the summit and at the margins of the guyot.
“The south flank of another seamount was crossed at the north end of the line. A 637 nT magnetic
-anomaly is centered over the guyot The gravity anomaly of 204 mgal is symmetrically centered

over the structure.

Tarang Bank was crosscd by 3.5 kHz line 7 and .
3.5 kHz record (Figs. 6, 36) shows a steep slope and terraces at about 2250 m and 2630 m water
depths. Dredges 4 and 5 on the lower flank recovered basalt capped by reef limestone.

Caroline Ridge and Sorol Trough were crossed by lines 8-14 and part of line 15. The
southwest end of LINE 8 (SW-NE; Figs. 7, 18, 37A, 38A) crosses Eauripik Rise, covered by 600
m of sediment in low lying areas and thin sediment cover on topographic highs. Dredging of the
northwest flank of the rise recovered mainly basalt and breccia (Dredge D19, Table 6). Line 8
continues to the northeast across Sorol Trough, which is characterized by a series of basement
blocks and by a 58 mgal gravity low (Figs. 37B, 38B). To the northeast the profile crosses west
Caroline Ridge, which is covered in places by up to 500 m of sediment, but is generally veneered

~with about 100 m of strata (Figs. 37C, 38C). The ridge is/characterized by a negative magnetic
anomaly of 118 nT. Northeast of the ridge are abyssal sediments more than 1000 m thick. The
southern edge of the abyssal plain is notched by a channel|that may be underlain by a fault zone
(Figs. 37D, 38D). To the northcast, the profile crosses T: ng Bank, a basement ridge that was
dredged along line 7. The bank is flanked by thick accumulations of sediment shown along line 8.
The southern part of LINE 9 (SSW—NNE Figs. 7, 18, 39A, 40A) crosses Eauripik Rise and
Trough, which is filled with 300 m of sediment, and continues across Sorol Ridge and Trough.
Flat-lying sediment to 200-300 m thick fills lows within Sorol Trough. The northern part of Sorol
Trough is filled with about 600 m of sediment deposited during at least two distinct episodes as
evidenced by discordant reflectors. Just north of Sorol Trough is Caroline Ridge, which is

underlain by a few hundred meters of sediment and is chaj
(Figs. 39B, 40B). The northern part of Caroline Ridge is un
tilted blocks that are separated by high-angle normal f:

morphology and subbottom structures suggest that this arez
the tilted blocks, the sea floor is underlain by 300 m of flat-lyi

'The southwestern end of LINE 10 (SW-NE,; Figs. 7, 17, 41,

the south flank of Caroline Ridge, where dredgmg recove

(Dredges D17 and D18, Table 6). The crest of Caroline

sediment. The northern half of the ridge is down-faulted fi

discordant strata reflecting several periods of tectonism.

normal faults in a fashion similar to those observed on line 9.

‘about 800 m in the area just south of the down-faulted Fais
‘thickness reaches 500 m. The overall area is characterized

racterized by a 194 nT magnetic high
derlain by a series of back-rotated and
aults that offset the sea floor. The
1 is a zone of extension. Just north of
ying sediment forming a broad mound.
42) crosses part of Sorol Trough and
red mainly metabasalt and limestone
Ridge is capped by nearly 600 m of
prming Fais Trough that is filled with
The section is broken by high-angle
The maximum sediment thickness is

Trough, where the maximum sediment

by a 150 nT magnetic high. LINE 11

(SE-NW; Figs. 7, 17, 43, 44) traverses Sorol Trough and reveals between 200 and 300 m of
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sediment. The northern end of the line crosses a series of sediment-free hills that mark the base of
the south flank of Caroline Ridge. LINE 12 (SSE-NNE; Figs. 7, 16, 17, 45, 46) crosses Caroline
Ridge and Fais Trough. The crest of the ridge, at the southern end of the line, is capped by about
300 m of sediment. A small basement knoll crops out through the sediment layers and is
characterized by a 340 nT negative magnetic anomaly. Near the center of the profile, the sea floor
drops dramatically, forming Fais Trough, which is characterized by a series of fault-bounded and
tilted blocks forming a graben. The faults are high angle normal faults that generally dip toward
the central basin. Dredges D15 and D16, on the southemn flank of Fais Trough, recovered basalt in
the trough and basalt and siltstone that cap the ridge (Table 6). Caroline Ridge north of Fais
Trough drops to the north in a series of stepped and faulted terraces blanketed by 100 to 300 m of
sediment and characterized by a 190 nT magnetic high. The faults bounding the terraces are high-
angled normal faults dipping to the north. LINE 13 (SW-NE; Figs. 7, 15, 47, 48) crosses a
sediment-free trough located between Ulithi Atoll and Fais Island and then extends across Fais
Island Ridge and Caroline Ridge. Dredge D14, from the southwest flank of Fais Island Ridge,
recovered strongly recrystallized limestone. The ridges slope gently to the northeast and are
capped by about 200 m of sediment, except where basement knolls are exposed. The line is
characterized by a 220 nT magnetic high at its southern end and a 130 nT magnetic low near its
northern end. Strata near the bedrock high (Day 297, 0800) appear to be disrupted by slumping.
LINE 14 (SSE-NNW; Figs. 7, 15, 49, 50) is a longitudinal traverse through a trough between
Ulithi Atoll and Fais Island Ridge. The trough is filled with more than 500 m of strata that are
gently folded, possibly by sediment draping over bedrock highs, or from collision of Caroline
Ridge with the Yap arc. LINE 15 (SE-NW; Figs. 7, 51, 52) continues in the trough on Caroline
Ridge and crosses the north flank of Ulithi Atoll. The sedimentary section is about 200 m thick,
but bedrock crops out in several places. Line 15 continues to the northwest across either thinly
sediment draped or barren bedrock slopes that descend into the Yap trench.

Mariana-Yap arcs are crossed by part of airgun line 15, airgun line 16, and the summit area
by airgun lines 17 and 18 and 3.5 kHz lines 19 and 20. On the continuation of LINE 15 (Figs. 7,
11, 51, 52), the northem, or arcward, side of the trench is characterized by hummocky topography
devoid of sediment that may represent slump blocks. The arc summit was dredged, recovering
mainly serpentinite (Dredge D7, Table 6). The crest of the arc is characterized by a 133 nT
magnetic high. LINE 16 (SW-NE; Figs. 10, 11, 53, 54) begins in the southwest at the summit of
north Yap arc and crosses the junction of the Yap and Mariana trenches to the summit of the
southernmost Mariana arc. Both flanks of the trenches at the juncture are either devoid of sediment
cover or thinly veneered. Small pockets of strata about 100 m thick are evident at the deepest
southwestern and northeastern ends of the trench-trench juncture. At the northeastern end of the
line, the southern Mariana arc is marked by a 250 nT magnetic anomaly. LINE 17 (SE-NW; Figs.
10, 55, 56) crosses the northeast flank of an unnamed seamount on the Mariana side of the Yap-
Mariana arcs juncture crossed at the northeast end of line 16. The seamount is either devoid of
sediment or has a thin cover. LINE 18 (N-S; Figs. 10, 57, 58) extends north-south across the
same seamount as line 17 and also shows a surface barren of sediment except for a small pocket of
less than 100 m near the southen end of the line. The flank of the seamount was dredged,
recovering basalt (Dredge D6, Table 6). A 163 nT magnetic high occurs over the crest of the
seamount. LINE 19 (W-E; 3.5 kHz only; Figs. 12, 59) crosses Hunter Bank showing two
terraces on the upper east flank and little sediment cover. Dredge D8 on the middle west flank
recovered basalt and breccia, whereas dredge D9 from the east summit recovered limestone. LINE
20 (NW-SE; 3.5 kHz only; Figs. 13, 60) crosses north Ngulu Ridge and shows two terraces on
the upper west flank. Dredges D10 and D11 on the west flank recovered pebbly limestone, basalt,
metamorphic and hydrothermal rocks, and serpentinite.

Sorol Guyot is crossed by lines 21-23. LINE 21 (W-E; Figs. 14, 61, 62) apparently
crosses the crest of Sorol Guyot. Except for a bedrock knoll near the western end of the line, the
guyot is uniformly blanketed with about 200 m of sediment. The bedrock knoll is characterized by
a 212 nT magnetic low. The sedimentary strata at the eastern end of the line are broken by two
high-angle reverse faults that appear to disrupt the sea floor. LINE 22 (SE-NW; Figs. 14, 63, 64)
shows hummocky topography that is thinly veneered with sediment. A broad magnetic high of
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- enigmatic subbottom reflectors dip to the northwest beneath the slope. LINE 23 (S-N; Figs. 14,
65, 66), unlike the previous two crossings of Sorol Guyot, shows a thick sedimentary cover on
the south flank of the guyot. The maximum sediment thickness is about 400 m at the southern end
of the line, which also shows evidence for the development of a channel and levee at the sea floor.

- The sediment layers are about 300 m thick on the north flank of the guyot. Bedrock crops out at

the crest and north flank of the guyot. This flank was dredged at sites D12 and D13, where basalt

was recovered (Table 6).

West Lanthe Bank was crossed by lines 24-26. LINE 24 (NW-SE; Figs. 19, 67, 68)
shows that the bank is devoid of sediment except near the southern end of the line, where a veneer
of sediment occurs. About 200 m of sediment flanks the edge of the bank. This region is also
marked by a 250 nT magnetic high. LINE 25 (SE-NW; Figs. 19, 69, 70) shows strata as thick as
300-400 m at the south end. The lower sedimentary units dip to the south and discordantly
 underlie flat-lying upper beds. Sediment ponds containing about 200 m of sediment occur on the
' bank near the center and northern end of the line. The southern part of the bank on this line is
i characterized by a 342 nT magnetic high. LINE 26 (SW-INE; Figs. 19, 71, 72) imaged the most
interesting structures beneath west Lanthe Bank. The central bank consists of a perched basin
containing a thick sedimentary section, seen at the center of the profile. Stratigraphically lower
beds in the basin dip to the south and are discordantly overlain by flat-lying upper units. The total
thickness of both sections is about 500-600 m. The thinly veneered or bare bedrock flank and
peak to the south are characterized by a 374 nT magnetic high. The northern flank of the basin is
also thinly veneered or bare of sediment. The northern flank was dredged at sites D21 and D22,
where basalt, limestone, and sandstone were recovered.

Condor Bank was crossed by 3.5 kHz line 27. ﬁ*LINE 27 (S-N; Figs. 20, 73) shows

- about 80 nT characterizes the central part of the line. Near%:hhe northern end of the line, a series of

rugged topography with a double peak at the summit, which probably represent different positions
of an outer reef margin. Rocks recovered in dredge D23 from the mid-south flank are solely
'limestone. |

Chuuk B, an unnamed seamount on the Chase et %l. (1988) map, was not found on 3.5
kHz lines 28-32. Either the seamount does not exist, or its location is significantly different from
that indicated on the map. LINES 28-32 (Figs. 21, 74-78) show a number of small hills and levee
‘and channel systems on the sediment-covered abyssal plain.; A small 700 m high seamount is seen
on lines 30-32, but is much smaller than the 2500+ m seamount indicated on the Chase et al.
(1988) map. }

The position of Luhk seamount as located on the Chase et al. (1988) map was crossed by
3.5 kHz line 33 (Figs. 22, 79), but the seamount was not found. Line 33 shows a sediment-
covered abyssal plain that rises to the west, which may mark the lower east flank of Luhk
'Seamount.

Olapahd Seamount was crossed by 3.5 kHz line $4. LINE 34 (Figs. 23, 80) shows a
rugged, sediment-draped summit with basement outcrops at the summit margins. Dredge 24
recovered limestone and minor basalt from the lower east flank.

l

WATER COLUMN STUDIES
|

Eleven CTD-oxygen profiles were taken over seamounts, banks, ridges, and troughs
throughout the area of study (Figs. 81-91). The CTD stations were either over the summit or the
upper flanks of the topographic features studied, in water depths between 2147 and 2930 m.
Below 1500 m, the temperature, salinity, and oxygen values were fairly uniform over this large
study region. However, the characteristics of the water column did vary with geographic location
at shallower water depths. The water depth to the top of the oxygen-minimum zone varies from a
low of 240 m over west Lanthe Bank, the southernmost station, to 400 m over the Mariana-Yap
arcs junction, the northernmost station (Table 4). In fact, the water depth to the top of the oxygen-
minimum zone has a weak positive correlation (coefficient =10.599) with latitude of the 11 stations,
that is it deepens to the north. From the 11 CTD stations, the regional mean water depth of the top
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of the oxygen-minimum zone is 289 m, 16 m shallower than it is in the Marshall Islands EEZ
(Hein, Kang, et al., 1990).

The lowest minimum oxygen content measured in any of the profiles was over Olapahd
Seamount, the station farthest to the east, and the highest minimum content was over the Mariana-
Yap arcs juncture, the station farthest to the northeast. The three stations with the highest
minimum oxygen contents occur along the Mariana-Yap arcs (Table 4). In fact, the degree of
depletion in oxygen (lowest oxygen content at each station) has a weak positive (coefficient =
0.617) correlation with latitude and moderately strong negative (coefficient = -0.807) correlation
with longitude. In other words, seawater is more depleted in oxygen to the east and south. This
pattern is typical for this region of the equatorial Pacific. There is a core of generally low oxygen
contents in water shallower than 250 m that extends from the South American coast westward
across the Pacific, with the lowest oxygen values found to the east (Pickard and Emery, 1982).
This pattern of oxygen content distribution is due to the equatorial zone of high biological
productivity. The greater quantities of organic matter produced to the south and east are oxidized
in the water column and, combined with zooplankton respiration, deplete the seawater in oxygen,
thereby raising the top boundary of the oxygen-minimum zone.

In order to compare temperature profiles from the 11 stations, we looked at the water depth
at each station corresponding to 10°C; the 10°C isotherm corresponds roughly to the boundary
between the seasonal and permanent thermocline in the region and occurs at water depths near the
- top of the oxygen-minimum zone (Table 4). The deepest level of the 10°C isotherm is over Pali
Seamount and the shallowest level is over west Lanthe Bank. However, this parameter does not
correlate with latitude or longitude and overall varies little (61 m) throughout the area. In the
Marshall Islands, the depth to this isothermal boundary varied by 110 m. The mean regional water
depth of the 10°C isotherm for the EEZ of FSM is 288 m, compared to 247 m for the Marshall
Islands EEZ.

Salinity profiles are similar throughout the region. Minimum values of about 33.9%o occur
at the sea surface (Figs. 81-91). Salinity increase rapidly to maximum values of about 34.9%o at
water depths that range from 100-140 m. The high salinity values are typical of equatorial waters
that extend across the entire Pacific. These waters are among the most saline in the Pacific. The
equatorial water is separate from, and does not mix with, the warmer less saline surface waters
because of the strong density difference between them. Salinity then decreases rapidly to
intermediate values of about 34.5%o at water depths that range from 205-320 m. This low saline
water represents the northward limit of the Antarctic Intermediate Water. Below 400 m, salinity
then increases uniformly to the bottom of the profiles.

GEOLOGY, PETROLOGY, AND GEOCHEMISTRY

Rock and Sediment Ages

Unconsolidated sediment occurs throughout the area studied, but is thin in most areas.
Sediment is most commonly white to brown foraminiferal-nannofossil coze of Quaternary age, but
may be as old as late Miocene in places (Table 5). Slightly calcareous or noncalcareous muds
occur in several places, for example, Pliocene aged serpentine mud of mixed grey, blue, and green
colors was recovered from the northern Yap arc (Table 5: D7-1); grey mud recovered from Hunter
Bank on the central Yap arc is probably of similar composition and age. Green-brown
volcaniclastic(?) mud was recovered from Sorol Trough.

Pali Seamount and Namonuito Guyot are probably part of the Cretaceous seamount
province that occurs to the north and west of FSM. This is confirmed for Namonuito Guyot,
where Cretaceous and late Paleocene or early Eocene limestones were recovered (Table 5: D3-5,
6, 7). Thus, even though Namonuito Guyot lies adjacent to the north flank of the Tertiary central
Caroline Ridge, it is part of the older Pacific plate on which Caroline Ridge was superposed.



Central and western Caroline Ridge, including Tarang Bank, Sorol Guyot, Fais Island
, Ridge, and Fais Trough originated during the Oligocene, as indicated by middle to late Oligocene
microfossils from siltstones and limestones recovered from those places (Table 5: D4, D13-D16).
An Oligocene age assignment for western Caroline Ridge is consistent with the age of upper
Oligocene chalk recovered at DSDP sites drilled during leg 6 (Fischer et al., 1971) on the north
flank of Caroline Ridge. The basalt recovered from site 57, leg 6 is also of late Oligocene age,
123.5 m.y. old (based on the mean of two samples: 23.1 + 0.95 and 23.9 + 1.2; Ridley et al.,
+1974). Sedimentary rocks dredged on Condor Bank, south-central Caroline Ridge, are late
' Miocene in age and those from Sorol Trough are Miocene or Pliocene in age (Table 5).
| The oldest sedimentary rocks of unquestionable age dredged from the Yap arc (Junction of
Mariana-Yap arcs, north Yap arc, Hunter Bank, and north Ngulu Ridge) are middle Miocene,
however, rocks may range in age from Eocene to Holocene|(Table 5: D6-D11). For comparison,
the oldest dated rocks from Yap Island are Miocene, based on microfossils, however, rocks may

be as old as Oligocene, based on regional comparisons and geologic arguments (Cole et al., 1960;
Johnson et al., 1960).

Rock Types, Petrography, Mineralogy, and Chemistry

Rock types in decreasing order of abundance are basalt-diabase-gabbro; limestone;
metamorphic rocks including serpentinite, greenschist, metaigneous rocks, and amphibolite;
mudstone-siltstone-sandstone; breccia; phosphorite; hyaloclastite and tuff (Tables 6, 7).
Metamorphic rocks were recovered on the Yap arc and from Fais and Sorol troughs. Skarn
deposits were recovered from north Ngulu Ridge and Fais Trough. To our knowledge, this is the
first reported occurrence of deep-sea skarn deposits and the first reported occurrence of
'metamorphic rocks from Caroline Ridge. ‘

Rocks recovered from Pali Seamount (D1) include yellow-green hyaloclastite, phosphorite,
and minor altered basalt (Tables 6, 7). The hyaloclastite is in part phosphatized and the
phosphorite and basalt occur as clasts in carbonate fluorapatite (CFA) cemented breccia. All the

- phosphorite is CFA and the hyaloclastite altered to phillipsite and smectite (Table 9). The
CaO/P20s ratio for the phosphorite is 1.7 (Table 10), higher than the range expected (1.5-1.6) for
theoretical chemical compositions of CFA (Manheim and Gulbrandsen, 1979). The ratio 1.7 falls
within the range determined for phosphorites from the Marshall Islands (1.6-1.9; Hein, Kang, et
al., 1990) and the Johnston Island area (1.6-1.7; Hein et al., 1990a). The excess Ca over P is
apparently typical of seamount phosphorites and is probably idue to Ca associated with plagioclase,
phillipsite, and calcite. L

Rocks recovered from Namonuito Guyot (D2, D3) include mudstone-siltstone, limestone,
basalt, and minor pebbly sandstone and breccia (Tables 6, 7). The siltstones are volcaniclastic
with grains of volcanic rock fragments, feldspar, magnetite, pyroxene, and sparse quartz and
foraminifera in a tabular phillipsite and/or CFA cement. Phillipsite and CFA may also replace
grains and fill voids and fractures. Smectite occurs in the matrix. Pebbly sandstone is a coarser-
grained variety of the siltstone, but also contains recrystallized or micritized (by algal borings) reef
bioclasts. The breccia has similar clasts to those in the siltstone and sandstone; clasts support a
radial-fibrous rim cement followed by calcite cement filling the remaining pore space. The siltstone
from D2 has the highest K2O content (6.31%) and the siltstone from D3 the highest FepO3 content
(15.2%) of any rocks analyzed from FSM (Table 10). The la\igh potassium is reflected by the high
K-feldspar content (Table 9) and may indicate potassium metasomatism in places on the guyot.

The Cretaceous limestone is composed of recrystallized foraminifera in calcite cement. The
first stage in cementation was a rim cement and then the remaining pore space was filled. The
calcite chamber fill and cement are texturally identical. Much of the limestone was partly to
completely phosphatized (Tables 9, 10). The phosphorite has a CaO/P20s5 ratio of 1.8, and
contains very little aluminosilicate detritus. In addition to foraminifera, sparse reef bioclasts and
fish debris occur in a fine-grained phosphorite cement. Oolitic iron oxides also occur.




Volcanic rocks are limited to centimeter-sized rock fragments. Hyaloclastite (peperite)
consists of angular, highly altered glass shards in a calcite cement. Other volcanic rock fragments
include olivine phyric basalt that is extremely altered, with the olivine microphenocrysts replaced
by clay minerals and iron oxides. One strongly alkalic fragment (probably a melilitite or
nephelinite) consists of rare clinopyroxene phenocrysts and titanomagnetite microphenocrysts in a
groundmass of melilite microlites, clinopyroxene, and olivine pseudomorphs, all set in a matrix of
bright-yellow palagonite. Radial-fibrous zeolite and calcite veins cut some of the samples; zeolite
formation always preceded calcite precipitation. Microprobe analyses of minerals and whole rock
chemical analysis of the volcanic rocks are in progress (Table 8).

Rocks recovered from Tarang Bank (D4, DJS) include basalt, bioclastic-volcaniclastic
siltstone, and limestone. The siltstone is composed of grains of volcanic rock fragments,
foraminifera, magnetite, plagioclase, pyroxene, and quartz in calcite and phillipsite cement, which
also fill vesicles in basalt grains, chambers in foraminifera, voids, and fractures. Calcite formed
before phillipsite. Many grains altered to smectite.

The limestone is a lagoonal, or outer reef, bioclastic limestone composed of aragonite and
magnesian calcite (Tables 7, 9).

Tholeiitic basalt contains abundant large plagioclase and clinopyroxene phenocrysts (to 2
cm) in a groundmass of brown clinopyroxene subophitically enclosing plagioclase microlites.
Clinopyroxene phenocrysts are colorless and only slightly less abundant than plagioclase. Some
clay mineral alteration occurs in the groundmass and phillipsite fills some vesicles. A similar basalt
sample has plagioclase, clinopyroxene, and fresh olivine phenocrysts in an unaltered sideromelane
groundmass. Plagioclase separates will be dated by K-Ar techniques (Table 8).

Rocks recovered from an unnamed seamount at the junction between the Yap and Mariana
arcs (D6) include basalt, tuff and mudstone, and limestone. Tuff is composed of glass shards in a
smectite and iron oxide matrix with scattered plagioclase and foraminifera and sparse pyroxene.
The foraminifera are replaced, possibly by smectite. Extensive borings in the yellowish-white
limestone are lined with Fe-Mn oxyhydroxides.

Tholeiitic basalt is moderately vesicular, plagioclase and clinopyroxene phyric, with low
abundances of small plagioclase and clinopyroxene glomerocrysts in a glassy or cryptocrystalline
groundmass peppered with magnetite and partly altered to smectite. Other samples have similar
sparse glomerocrysts in a seriate or subtrachytic groundmass of plagioclase microlites with
anhedral clinopyroxene. Some samples have glass rinds of sideromelane that are substantially
altered to smectite. Some vesicles are filled with massive zeolite with a relict radial-fibrous texture.
One sample is highly vesicular with pinhole-sized round vesicles.

Rocks recovered from the northern Yap arc (D7) include serpentinite, serpentinite breccia,
layered serpentinite-magnetite rocks, metaigneous rocks, vein quartz, and minor epidosite, basalt,
and sandstone. Many of the rocks have been strongly sheared. Serpentinite is dominantly
composed of lizardite forming a mesh texture, which derives from the replacement of olivine
(Wicks et al., 1977). However, all samples have various amounts of bastite (probably also
lizardite), which is a pseudomorph predominantly after pyroxene, but less commonly after
amphibole (Wicks and Whittaker, 1977). Veins are dominantly serrate serpentine, but in places are
also fibrous with curved or straight fibers oriented perpendicular to fracture walls or rarely are
composed of blocky lizardite crystals. Magnetite is ubiquitous and forms along grain margins, as
lenses, as isolated grains, as anastomosing networks, and also along cleavage planes or fractures
in pseudomorphed pyroxene grains. In some samples, elongate magnetite grains show a preferred
orientation and in other rocks form layers alternating with serpentinite layers. Very fine-grained
garnet(?) occurs along hairline fractures in some pseudomorphed pyroxene grains. Chlorite veins
also cut the serpentinites. Iron content is generally high (mean 6% Fep03) compared to other
serpentines (Faust and Fahey, 1962), which reflects the high contents of magnetite. MgO and
SiO7 average 35.8% and 37.3%, respectively. Of the platinum-group elements (PGEs), Rh, Ru,
and Ir are more concentrated in the serpentinites than they are in any of the other substrate rock
type analyzed (Table 10); Pt contents are also relatively high.

Basalt, diabase, and microgabbro are aphyric, holocrystalline, and fine- to medium-
grained, with subophitic texture of brown anhedral clinopyroxene partially enclosing plagioclase
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and a small amount of olivine (pseudomorphed by smectite and iron oxides). Most samples have
been metamorphosed and contain amphibole, quartz, and chlorite. Rare large irregularly shaped
vugs occur in some samples and may be partly filled with smectite; opaque minerals are abundant
.in all samples. Plagioclase is cloudy and partly altered; smectite is abundant in the groundmass.
Some basalt samples are highly altered, plagioclase phyric, with variolitic texture and some have
palagonite rinds. Altered tuff breccia is composed of palagonite lapilli, plagioclase, amphibole,
'and clinopyroxene. Some glass has been preserved, but most is altered to smectite. Quartz,
' smectite, and analcite fill vesicles in the glass shards. Metdgabbro sample D7-6-1 has the highest
Pt (7.6 ppb) and Pd (17 ppb) contents of the analyzed substrate rocks (Table 10). In contiast, Rh,
Ru, and Ir contents are very low in this sample.
’ Epidosite has a cataclastic texture and is composed of large analcite grains, plagioclase, and
‘quartz in an epidote matrix. Thick chlorite and thin quartz veins are common. Epidote replaced
a}rilalc_ite and chlorite veins cut quartz veins. The paragenesis is quartz-analcite-epidcie-quartz-
chlorite.

Large fragments of quartz-plagioclase veins are translucent and milky with high sodium
contents (Table 10), which indicates that the mineralizing fluid was probably seawater or a
seawater-derived brine.

Rocks recovered from Hunter Bank (D8. D9) on the Yap arc include limestone, basalt,
.diabase, gabbro, breccia, and minor metagreywacke, mudstone-siltstone, and cataclastic quartz-
‘serpentinite rock. Reef framework limestone is most common, with minor clastic limestone and
Halimeda limestone of lagoonal facies. The limestone i$ composed of aragonite and calcite,
mdlcatmg that it had probably not been subjected to meteoric diagenesis before the reef subsided.
Rare pebbly limestone is composed of reef debris, basalt, and quartz clasts in calcite ccment.

A wide variety of breccia occurs, but is most commonly composed of basalt clasts in a
matrix of crushed clay- and silt-sized grains. Other clast types include altered volcanic glass,
serpentinite, andesite, quartz, magnetite, and amphibol¢, which may occur in a matrix of
serpentine, quartz, and chlorite that was clearly metamorphosed and hydrothermally altered along
with the clasts. Quartz fills some vesicles, vugs, and fractures and, along with calcite, forms a
cement.

Sandstone-siltstone-mudstone may be laminated, where laminae are defined by iron oxide
content, grain size, and carbonate content. Coarser laminae are graded and contain more

oraminifera. Metagreywacke and altered siltstone are composed mostly of grain-supported
yroxene and amphibole crystals, mosaic quartz, and volcanic rock fragments altered to smectite,
hlorite, zeolite, and iron oxides in a smectite cement. $ome chlorite occurs as cement and
hlorite, calcite, quartz, smectite, and analcite fill vesicles. Rare recrystallized foraminifera(?) are
resent. These metamorphosed and hydrothermally altered volcaniclastic rocks are strongly
eformed and sheared and are about 7-13 times enriched in gold (3-6 ppb, Table 10) over oceanic
asalts (=0.45 ppb; Keays and Scott, 1976; Nesbitt et al., 1987).
Fine, medium, and coarse gramed gabbro is composed predominantly of plagioclase,
hnopyroxene and minor olivine pseudomorphed by clay minerals and iron oxide. Biotite is a
minor component in some and opaque minerals are an abundant accessory phase in all samples.
Gabbro samples have secondary minerals characteristic of lower greenschist facies metamorphism,
with chlorite and traces to moderate amounts of actinolite. Volcanic rocks consist of highly altered
ankaramite basalt with large unaltered clinopyroxene phenocrysts and pseudomorphs of olivine in a
groundmass of partly altered (not greenschist facies) plagmse clinopyroxene, and glass altered
to smectite. Another volcanic rock type consists of highly vesicular, strongly altered basalt with
clinopyroxene and olivine microphenocrysts in a glass groundmass, largely altered to smectite. In
other sample (D8-14-1), calcite replaces grains and, along with chlorite and smectite, replaces
he groundmass. Mordenite, heulandite, quartz, chlorite, and smectite fill vesicles and fractures.
esicle fill parageneses include smectite-analcite, smectite-heulandite-mordenite, chlorite-quartz,
d quartz-smectite-quartz.

Rocks recovered from north Neulu Ri D1 11) include breccia and sandstone;
asalt, andesite; serpentinite, amphibolite, and metaigneous rocks; pebbly limestone; and skam
eposits. Pebbly limestone is composed of grains of altered and metamorphosed basalt and other
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igneous rock fragments, amphibole-quartz-mica schist, pyroxene-mica-plagioclase schist, mica-
chlorite schist, serpentinite, amphibolite, hornblende, chlorite, magnetite, hematite, quartz,
pyroxene, foraminifera, coral, calcareous algae, limestone, echinoid spines, and rare fish debris in
calcite cement, or more rarely in nannofossil-foraminifera matrix. Moldic porosity is high.

Sandstone and breccia are composed of clasts or grains of volcanic rock fragments, mica,
serpentine, pyroxene, smectite-replaced volcanic glass shards, chlorite schist, amphibole, fish
debris, foraminifera overgrown by calcite, and limestone in a phillipsite cement. Calcite cement
occurs locally. Some deposits are cemented by, and contain stratiform layers of, hydrothermal
manganese oxyhydroxides, which will be discussed in the next section.

Serpentinite is much like that from dredge D7, with mesh texture being dominant,
indicating replacement of olivine. The cell walls are composed of microfibrous serpentine in
places, and in sample D11-11, the cell walls and interiors are laminated serpentine-magnetite.
Bastite pseudomorphs of pyroxene occur in various amounts. Both fibrous and non-fibrous
serpentine occur in veins. Magnetite is ubiquitous and abundant in some samples. Some samples
(D11-8-1; D11-26) are highly fractured and the pyroxene clasts have only been partly replaced by
serpentine, mostly along fractures. The MgO contents (mean 35.4%) are comparable to those of
serpentinites in dredge D7, but the SiO; contents are greater (mean 39.4%) in dredge D11 samples.
The Fe;03 content is also greater (mean 8.2%) in D11 samples, which reflects the generally high
magnetite contents and high goethite and magnetite in D11-26. Serpentinized greenschist consists
of mesh textured serpentine grains, hornblende surrounded by chlorite, and tremolite-actinolite, all
embedded in prehnite, and in places chlorite; the rock is laced with magnetite along all fractures.
Thin quartz veins cut the rock.

Skarn deposits consist of vesuvianite, garnet (probably andradite), chlorite, and minor
serpentine (Table 9), which formed in limestone. Vesuvianite forms columnar aggregates and,
along with fibrous serpentine and feathery chlorite-serpentine grains, is embedded in a very fine-
grained matrix of vesuvianite, garnet, and chlorite. The matrix has a relict radial-fibrous texture.

Fine, medium, and coarse grained gabbro with fractured olivine phenocrysts are mildly
serpentinized and contain pyroxene replaced by tremolite; one sample contains biotite. Magnetite
fills fractures and chlorite occurs interstitially. Andesite is quartz phyric, peppered with magnetite,
and contains pyroxene and plagioclase in a groundmass altered to smectite. Amphibolite is banded
and consists chiefly of green hornblende, sodic plagioclase, alkali feldspar, and pyroxene, with
interstitial prehnite, chlorite, and serpentine. Some bands are nearly pure amphibole, others
serpentine.

Rocks recovered from Sorol Guyot (D12, D13) include alkalic basalt and gabbro, with
very minor limestone and breccia. Medium- to coarse-grained gabbro consists of purplish-brown
clinopyroxene, plagioclase, and olivine pseudomorphs replaced by smectite and iron oxides.
Smectite-hematite-calcite fill vugs in that order of occurrence. Volcanic rocks consist of vesicular,
sparsely plagioclase-phyric basalt with plagioclase in seriate textured groundmass. One basalt
sample is non-vesicular, aphyric, strongly altered, and sheared. Smectite fills vesicles.

Rocks recovered from Fais Island Ridge (D14) include chiefly limestone, with minor tuff,
basalt, gabbro, and volcaniclastic sandstone, siltstone, and breccia. Limestone is composed of
foraminifera, ostracods, pelecypods, and micritized (by boring algae) clasts of coral, calcareous
algae, and echinoids, in a coarse- to fine-grained calcite cement. Some samples consist of single
large recrystallized coral. Limestone fracture breccia contains many microfaults and fractures filled
with mosaic quartz. Limestone fragments can be fit back together. Large fragments of coral and
calcareous algae occur. Some clasts are recrystallized, while others are micritized. Intra- and inter-
clast calcite cement is common. Some samples are dominantly foraminifera, others reef debris.

Tuff is composed of glass shards altered to smectite and zeolites, sparse to moderate
amounts of plagioclase crystals, sparse pyroxene, moderate to sparse calcite and zeolite vesicle fill,
hematite veins, and abundant anatase. Porosity is high.

Tholeiitic basalt is highly vesicular, moderately altered, with intersertal to subophitic
texture; clinopyroxene partly encloses plagioclase that looks cloudy or mildly altered. Magnetite is
abundant and smectite alteration of the groundmass is common. A sample of non-vesicular basalt
contains similar minerals and has a similar intersertal to subophitic texture as the vesicular samples;
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rarely, the vesicles are filled with smectite and calcite. Hydrothermally altered basalt contains
coarse-grained quartz with undulatory extinction and quartz in the groundmass. Gabbro is
composed of very coarse-grained plagioclase, coarse-grained magnetite, and pyroxene and is
strongly altered to smectite and iron oxides.
f Rocks recovered from Fais Trough (D1 16) include basalt, volcaniclastic mudstone-
 siltstone-sandstone-breccia, and limestone with associated skarn deposits. Limestone varieties
.include burrowed micrite, pebbly limestone, and foraminiferal limestone. This latter type contains
skarn deposits and grades from red limestone, the least altered, to grey limestone, and finally to
yellow-green calcareous siltstone (skarn), which is the most altered and composed predominantly
|of andradite garnet. The garnets are close-packed, 5-25 um in diameter (predominantly about 10
‘um), and are concentrated in smectite-rich patches in calcite. The contact of the skarn with the
underlying limestone is highly irregular, but relatively sharp. In the limestone adjacent to the
skarn, the bioclasts (foraminifera, coral, gastropods, pelecypods) are recrystallized, tightly packed
.and squashed, and show a preferred orientation roughly parallel to the contact. Farther away from
'the contact (about 2 centimeters) with the skarn, the limestone has higher porosity, contains more
‘smectite and altered volcanic glass, and has a preferred orientation of grains, but is less deformed
and altered. Small pyroxene crystals are scattered through out the rock, which is cut by calcite
veins. Oxygen and carbon isotope data for the green, grey, and red limestones are as follows:

| Limestone/siltstone 813Cppp %o 81805mow %o

.Green, with garnets 1.6 | 18.8
Grey 0.0 | 21.9
Red 0.5 24.4

|

porosity, 8180 of 0%o for porewaters (seawater), and 5180 of 31%o for the biogenic limestone
(Savin and Yeh, 1981). The contact metamorphism shifted the porewater 8180 to about 18%o.
The temperature of re-equilibration for the limestones ranged from about 300°C for the red
limestone to about 500°C for the gamet-rich green calcareous skarn (fractionation factor from
O’Neil et al., 1969). These temperatures indicate that a vc?steep thermal gradient existed, about

The temperature of contact metamorphism was calculated a%suming an initial limestone with 20%

200°C over 3 or 4 cm interval. These temperatures of re-equilibration for the limestones are
comparable with the lower end of the temperature range for the formation of andradite garnet. The
lack of a change in the 513C values from those of biogenic carbonates (Savin and Yeh, 1981)
indicates that contact metamorphism took place within a clgsed or semi-closed system, with little
available organic carbon. ‘

Volcaniclastic rocks were deposited by turbidites and reworked by bottom currents.
Phillipsite and calcite form cements, volcanogenic grains are altered, mostly to smectite, and
carbonate bioclasts are common. :

Tholeiitic basalt is sparsely porphyritic and sparsely vesicular, with plagioclase and rare
clinopyroxene glomerocrysts. Smectite replaces much of the groundmass, and some vugs,

esicles, and fractures are filled with smectite and minor calcite and zeolites; in places, calcite
tcplaces smectite. Other basalt samples are fine-grained and holocrystalline, with rare plagioclase
glomerocrysts and olivine pseudomorph microphenocrysts. Diabase or microgabbro consists
mostly of plagioclase subophitically enclosed by brown clinopyroxene. Fresh olivine and
plagioclase phyric basalt has a glass rind of sideromelane.

Rocks recovered from Sorol Trough (D17, D18) include metabasalt, other metaigneous
rocks, greenschist, and very minor limestone. All the ignegus rocks were metamorphosed to the
greenschist facies, with characteristic chlorite, fibrous amphibole, and epidote (Table 9); minor
prehnite and pumpellyite may also occur in some rocks, Original textures are weakly- to
moderately-well preserved and many rocks are sheared. Relict textures indicate that some rocks
ere vesicular basalts with variolitic texture and others were fine- to medium-grained gabbros.
hlorite fills vesicles and in places formed long the margins of interlocking crystals. Chlorite also
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replaced the groundmass and some coarse-grained plagioclase. Penninite is the most common
variety of chlorite. Epidote fills fractures, voids, replaced the groundmass, and rarely fills
vesicles, where it may have replaced zeolites. Tremolite and actinolite replaced pyroxene and the
groundmass, and in places replaced chlorite, as did hematite. Prehnite fills some vesicles lined
with chlorite. Quartz fills some vesicles, replaced groundmass, and hosts abundant fibers of
actinolite(?). Magnetite is common in all the rocks.

Rocks recovered from north Eauripik Rise (D19) include breccia and basalt. Breccia is
composed of grey and brown basalt clasts in a phosphorite cement and altered hyaloclastite matrix.
Breccia varies from clast supported to cement supported varieties.

Alkalic pillow basalt is highly vesicular (with pinhole-sized vesicles), with pristine olivine
microphenocrysts and plagioclase microlites in a glass groundmass altered to smectite and iron
oxiﬁes; some fresh glass rind with olivine crystals is still present. Some vesicles are filled with
phillipsite.

Rocks recovered from west Lanthe Bank (D21, D22) include interbedded sandy limestone
and calcareous volcaniclastic sandstone-breccia and basalt. The sandstone was deposited by
turbidity currents on the limestone, but both rock types are commonly mixed. The sandstone
consists of grains of altered volcanic rock fragments (vesicular glass and basalt are most common),
pyroxene, plagioclase, recrystallized foraminifera, and recrystallized and micritized reef debris.
The rock is grain supported with minor smectite and calcite cement. The limestone is composed of
foraminifera, reef debris, and various amounts of the volcanogenic grains found in the sandstone.
Breccia consists of basalt clasts in closely packed glass shards (hyaloclastite matrix), some of
which are fresh and others replaced by phillipsite and smectite. Sparse grains of olivine,
plagioclase, and pyroxene also occur. Smectite and calcite are cements.

Alkalic basalt is highly vesicular, with unaltered olivine and plagioclase phenocrysts in a
glass groundmass replaced by smectite and iron oxides. Vesicles are rarely lined with phillipsite or
smectite. In one sample (D22-5-1) plagioclase laths occur in brown pyroxene and the groundmass
contains ilmenite needles.

Rocks recovered from Condor bank (D23) include limestone and minor pumice. The
limestone consists of recrystallized foraminifera in a fine-grained calcite cement. Some laminae
contain silt-size grains of altered volcanic rock fragments, pyroxene, and plagioclase. Other
laminae contain abundant benthic foraminifera.

Rocks recovered from Qlapahd Seamount (D24) include limestone and basalt. The
limestone is composed of foraminifera and reef debris in a calcite cement.

Alkalic basalt is non-vesicular sparsely porphyritic hawaiite, with plagioclase and
clinopyroxene phenocrysts in a trachytic groundmass of plagioclase microlites, tiny anhedral
clinopyroxene, and rare olivine pseudomorphed by iddingsite. Titanomagnetite is abundant.

MANGANESE AND FERROMANGANESE DEPOSITS

Ferromanganese deposits include hydrogenetic oxyhydroxide crusts and hydrothermal
oxide cement in sandstone. Manganese deposits consist of hydrothermal oxide and oxyhydroxide
stratiform submetallic layers and lenses in sandstone. The hydrothermal deposits were recovered
only from dredge D11 on north Ngulu Ridge.

Fe-Mn crusts have been studied in some detail during the past ten years, mostly from the
central Pacific region (e.g., Halbach et al., 1982; Aplin and Cronan, 1985; Hein et al., 19835a, b;
DeCarlo et al., 1987; Le Suave et al., 1989), but also from the Atlantic (Varentsov et al., 1991).
Hydrogenetic crusts from the FSM vary in thickness from a patina to 75 mm, with the greatest
average thickness being 50 mm (D1, Pali Seamount; see Table 6). This contrasts to the maximum
thickness of crusts recovered from the adjacent Marshall Islands of 180 mm, the thickest Co-rich
crust known (Hein, Kang, et al., 1990). However, only two Cretaceous seamounts have been
sampled in FSM; others may yield thicker crusts. The thicker crusts recovered in the FSM are
composed of two or more layers, six being the maximum and two being the most common.
Layers are laminated, massive and dense, massive and microfractured, porous and Fe stained, and

13



|
|
porous with empty vugs. Layers may contain columnar strlllcture:‘, inclusions of substrate grains,

large fractures, or may be minutely fractured (Tables 6,/7). However, most crusts are thin,

consisting of one massive or one porous layer. CFA veins, *ayers, and inclusions are not common

isn crusts from FSM, as they are from other areas, occurring only in dredge D1 samples from Pali
eamount.

The surface texture of crusts is predominantly botryoidal. Many botryoidal surfaces have
been smoothed, polished, or fluted by bottom current activity. All gradations from high relief
botryoids to uniformly smooth surfaces are found. Surfaces may be dense or granular and porous.
[Other surface textures include granular, which is the predominant texture on the sides and
lunderside of substrate rocks; lizard skin, which consists of very fine-scale botryoids; irregular; and
'smooth.
‘ Dredge D1 from Pali Seamount includes several hundred kilograms of Fe-Mn nodules.
Nodules range from 20 to 130 mm in diameter and average 45 mim. Seventy-five percent of the
nodules have a small nucleus or no discernable nucleus, 20% have a medium-sized rock nucleus,
‘and 5% have a large rock nucleus. This contrasts with most seamount nodules, where the nuclei
are most commonly large and represent Fe-Mn encrusted rock talus (Fizin et al., 1985a, b). Nuclei
are composed of lLyaloclastite (about 75%), phosphorite (about 20%), and basalt (about 5%).
Fractures and pores in the nodules are infilled with CFA.

Dredge D11 from north Ngulu Ridge recovered|about 85 kg of pale grey to black
hydrothermal Fe-Mn oxyhydroxide-cemented sandstone dnd breccia interbedded with 3 kg of
stratiform grey, steel-grey, and brown-grey submetallic hydrothermal Mn oxide. Some Mn layers
are disrupted. Fine-scale metallic botryoids line some voids. Mn layers are composed of
.alternating porous massive and very porous fibrous oxide laminae. In polished sections the
]stratiform oxide laminae occur as repeating couplets composed of an early formed porous massive
‘lamina that becomes massive and dense at the base and finally grew downward into columns or
bubble trains of oxides; abundant pore space occurs between the columns. The columns are
composed of botryoidal Mn oxide with the growth direction downward (convex downward).
‘These couplets are identical to those described by Hein et al (1990b). Each couplet shows axially
‘elongated growth from a point source and decreases in porosity and increases in crystallinity from
‘bottom to top of each composite layer. Also the reflected-light colors grade from grey to brown to |
black from bottom to top of each column and from bottom to top of the immediately overlying
massive dense layer. These couplets indicate formation from a supersaturated solution with
decreasing saturation and rate of precipitation with time. Each stratiform layer represents several
repetitions of the process. The couplets probably formed by the rhythmic pulsation of
'hydrothermal solutions, which is supported by the mineralogy and chemical compositions (see
next sections; Hein et al., 1990b).

The Mn oxyhydroxide-cemented Quaternary sandstone and breccia consist of volcanic rock
fragments, pyroxene, quartz, and serpentine grains in a massive cement; some layers contain
'predominantly foraminifera. Rocks may be either grain supported or cement supported; the latter
may grade into massive silty stratiform layers. The cement is in part botryoidal, forming
cauliflowerlike structures in foraminifera-rich beds that were cemented and replaced by Mn
oxyhydroxides.

Growth Rates and Ages

Growth rates were determined by using the Co, Fe, and Mn contents of the hydrogenetic
and hydrothermal deposits and the equation (growth rate in mm/m.y. = 6.8 x 10-1/(Con)1.67,
where Con = normalized cobalt content = Co x 50/Fe + Mn) of Manheim and Lane-Bostwick
(1988). Crust growth rates varied from 0.9 to 5.8 mm/mly., comparable to those reported for
hydrogenetic crusts from other areas (Hein et al., 1990a; Hein, Kang, et al., 1990). Growth rates
generally decrease with increasing distance from the Marjana and Yap volcanic arcs, with the
'maximum rates calculated for Sorol Guyot crusts and the minimum rates for crusts from Pali
Seamount. Presumably, the higher growth rates reflect input of hydrothermally produced metal
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hydroxides at the island arcs. Consequently, some of the crusts may have formed by a
combination of hydrogenetic and low-temperature hydrothermal processes. Using the equation (R
= 1.28/Co0-0.24 for Co contents > 0.24%) of Puteanus and Halbach (1988) developed for Co-rich
crusts, the growth rates range from 3.7 to >130 mm/m.y. Based on results from other areas, we
suspect that the rates produced by the Puteanus and Halbach equation may be too fast and those
produced by the Manheim and Lane-Bostwick equation may be too slow for mixed hydrogenetic-
hydrothermal crusts, but the regional trends in growth rates should remain the same (Hein et al.,
1990b). Growth rates can be determined directly by Sr isotope analysis (Futa et al., 1988; Ingram
et al., 1990) or Be isotope analysis (Segl et al., 1984; Mangini et al., 1986).

Growth rates of stratiform deposits from Ngulu Ridge vary from about 30 to 560 mm/m.y.
These growth rates may be too slow in that the Co contents of the deposits are anomalously high
compared to stratiform Mn deposits from the Mariana arc (Hein et al., 1987b) and the Tonga-Lau
region (Hein et al., 1990b).

The approximate ages of the crusts are determined from the calculated growth rates and the
thicknesses of the crusts. Crusts are about 10 to 30 m.y. old from the Cretaceous Pali Seamount
and Namonuito Guyot, and Eauripik Rise (unknown age); about 2 and 16 m.y. old from the
Oligocene and younger Mariana-Yap arcs junction; about 3 and 6 m.y. old from west Lanthe Bank
(minimum age of late Miocene) and the Oligocene and younger north Yap arc and north Ngulu
Ridge; about 2-3 m.y. old from Tarang Bank; and less than 1 m.y. old on the Oligocene Sorol
Guyot. These ages of initiation of crust growth are minimum ages because the technique does not
take into account dissolution and erosional unconformities, which can add another several million
years to the age of the crusts (Futa et al., 1988; Ingram et al., 1990). Even with moderate
increases in the age of initiation of crust growth, crusts at all locations formed much later than the
formation of the volcanic edifices that support them, especially those that occur on the Cretaceous
seamounts.

The age of the stratiform Mn layers is Quaternary, as they occur in volcaniclastic rocks of
that age. The duration of formation of each layer is estimated by dividing the thickness by the
growth rate. This calculation indicates that stratiform layers took from 9,000 to 70,000 y to form.
These durations of formation are longer than those calculated for stratiform Mn deposits from the
Tonga-Lau region (Hein et al., 1990b) and for durations of individual hydrothermal events
measured at oceanic spreading centers and determined from associated deposits (days to 1000 y;
for example Rona et al., 1984; Kadko and Moore, 1988; Shimmield and Price, 1988; Lalou et al.,
1990). Again, this is probably the result of anomalously high Co contents in the Yap arc deposits
that decrease the calculated growth rates.

X ray Diffraction Mineralogy

Great care was taken in sampling crusts and stratiform Mn deposits for chemical and
mineralogical analyses. All contamination from recent sediment was removed, which was
especially critical in the porous crust layers. Also, special attention was paid to obtaining a clean
separation of the lower crust layers from the substrate. Any minerals or elements determined to
exist in the various deposits were incorporated into those layers during deposition or diagenesis
and are not due to sampling procedures or post-depositional infiltration of sediment. Finally, all
encrusting organisms and other debris were cleaned from the crust surfaces before sampling. Bulk
always refers to the entire crust thickness whether composed of layers or not.

Bulk crusts and nodules and layers of crusts are composed of 92 to 100% §-MnO3
(vernadite), which has only two X ray reflections at about 2.42A and 1.41A (Table 11). On Pali
Seamount the §-MnQ3 is well crystallized in nodules relative to crusts formed nearby. X ray
amorphous Fe oxyhydroxide epitaxially intergrown with 8-MnQ3 is also a dominant phase. The
Fe phase crystallized to goethite in the older layers of sample D1-8 and, in the oldest layer, was
replaced by CFA; goethite also occurs in crust D3-3-3, probably in the older layers (Table 11).
The CFA also composes a small percentage of the Fe-Mn nodules, mostly as veins and layers in
the inner (older) parts of large diameter nodules. Detrital and eolian minerals make up the

15



|

remainder of the crusts, including quartz (to 3%), plagioclase (to 6%), and calcite (to 6%). In
general, crusts from the Yap arc contain more clastic debris (mean 4.9%) than crusts from other
areas (mean 1.2%). Most of the quartz and part of the plagioclase are eolian and the remainder of
the plagioclase and the calcite are reworked from local outcrops and incorporated into the crusts
during precipitation of the Fe-Mn oxyhydroxides. Some of the quartz in the Yap arc crusts may
also derive from local outcrops. In the open-ocean setting, no local source for quartz exists.
Calcite is rare in crusts and most commonly dissolves before accretion of more than a millimeter of
crust (Hein, Kang, et al., 1990).

‘ The hydrothermal stratabound deposits from north Ngulu Ridge are composed of
| pyrolusite, todorokite, birnessite, and probably 8-MnO;. i
“determine if it is not the dominant phase when mixed with todorokite and birnessite because its two
X ray reflections also occur in the patterns of the other twio. Consequently, the percentages are
difficult to determine and Mn minerals are listed in order of relative abundance in Table 11.
Todorokite also has X ray reflections at about 9.44A, 4.8A, and 3.3A and birnessite at about 7.2A
and 3.5A. Birnessite is always accompanied by todorokite and is more abundant than todorokite in
only one sample, a cement in sandstone (Table 11). Pyrolusite solely composes some layers and is
mixed with todorokite in other layers. This is the first study that we are aware of that has found
pyrolusite in hydrothermal Mn deposits in the ocean basins. Previously, it was found in insular
Mn deposits in the Tonga Islands, but not in the offshore deposits (Hein et al., 1990b). Pyrolusite
formed at sites with a high oxidation potential either by precipitation directly from hydrothermal

fluids, or by oxidation of primary todorokite. Consequently, pyrolusite probably formed very near
the sea floor. Rancieite ([Ca, Mn]Mn40Og.3H,0) may occur|in one sample.

Major and Minor element Chemistry

Crusts

Chemical analyses for 24 bulk crusts, 11 crust layers, a composite of 2 large nodules, a
composite of 8 small nodules, 7 stratiform layers, and 2 Fe-Mn oxide cemented sandstones are
presented in Tables 12 and 13 and basic statistics for the various groups in Tables 14-16.
Compositions from Table 12 were recalculated on a hygroscopic water-free (0% H20-) basis
(Table 13). The mean Fe and Mn contents of 24 bulk crusts are 16.9% and 16.4%, respectively,
yielding a Mn/Fe ratio of 1.0 (Table 14). The Mn/Fe ratio is lower than the average ratio for the
Marshall Islands (1.54) and for the entire central Pacific region (1.46); Fe and Mn are respectively
higher than and lower than their regional means of 15.7% and 23.0% (based on analyses of 311
bulk crusts from central Pacific seamounts and ridges; Hein et al., 1987a, 1991). Most other
metals are also below the central Pacific regional mean. Exceptions include elements that reflect
eolian and clastic input, such as Al (Table 17). Phosphorus is significantly lower than its regional
mean and much lower yet than the very high P contents in Marshall Islands crusts. The mean
contents of the potential economically important metals Co (0.32%) and Ni (0.29%) are much
below their regional means of 0.79% and 0.47%, respectively. Pt (167 ppb) is slightly below the
regional mean (240 ppb) and only half of the Marshall Islands mean of 489 ppb.

Little variability exists in the composition of crusts of different thicknesses (Table 17).
Cobalt, P, Cu, Mo, and Ni are somewhat more concentrated in thicker crusts and Fe in thinner
crusts. This small variability is partly due to the limited range in thicknesses of crusts, but
nevertheless contrasts with trends from other areas, where the metals, especially Co, are less
concentrated as crust thicknesses increase (Hein, Kang, et|al., 1990). Aluminum concentrations
are low in thin crusts and very low for the outermost surface (0-0.5 mm) of the crusts (Table 17).

Nodules from Pali Seamount generally have lower Fe and Mn and higher P contents than
do the crusts (Tables 12, 17). Phosphorous increases with increasing nodule diameter.
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Little variability exists in the composition of crusts from different geographic areas. The
Mn/Fe ratios vary from 0.8 to 1.2 and the highest Fe and Mn contents occur in crusts from Sorol
Guyot and west Lanthe Bank; the lowest Fe and Mn contents occur in crusts from the north Yap
and Mariana arcs (Table 17). Aluminum is highest in crusts from the Mariana-Yap arcs junction
and lowest in Tarang Bank crusts. Cobalt, Ni, and Cu are generally lowest in Mariana and Yap
arcs crusts. Chromium is very strongly enriched (380 ppm) in a crust from north Ngulu Ridge on
the Yap arc. Based on Co+Ni+Cu x10, Fe, and Mn contents plotted on a Bonatti et al. (1972)
ternary diagram, the crusts from FSM fall within the low trace metal half of the central Pacific crust
field (Fig. 92). No bulk crust or crust layer composition falls outside the central Pacific bulk crust
field.

It has been well established that Co and Ni contents in general decrease from outer crust
layers to inner crust layers (Halbach et al., 1982; Hein et al., 1985b). This relationship is not
noted here for two crusts (D6-5; D19-19), where the inner half is more enriched in Co and Ni than
the outer half (Table 12). On the other hand, six layers analyzed from crust D1-8 (Table 12) show
fluctuating Co and Ni contents in each successive layer, but overall, the inner half of the crust is
depleted in Co and enriched in Ni relative to the outer half. Copper is also enriched in the inner
half of the crust and P increases in the innermost two layers, which is typical of thick central
Pacific Co-rich crusts. The highest Co content measured (0.63%) was for the outermost surface
(0-0.5 mm) scraped from crust D1-9. Maximum Co contents typically occur in this surface layer
of crusts (Hein, Kang, et al., 1990). Other metals also vary with depth in typical central Pacific
crusts. Manganese commonly decreases and Fe and Pt increase toward the substrate. For crust
D1-8, Fe contents are greatest for layers in the inner half (except for the innermost 5 mm), but Mn
shows no trend with depth in the crust. Platinum, Rh, and Ir are also enriched in the inner half,
whereas Ru and Pd occur in nearly constant concentrations throughout the crust.

Adsorbed water (H0-) measured in the crusts varies with the humidity in the laboratory
where the samples were analyzed. Unless all samples are analyzed in the same laboratory at the
same time, H20-, and consequently the abundances of the other elements, will vary accordingly.
Therefore, compositions normalized to 0% H20- can be more readily compared and may indicate
the composition of ore if the crusts are eventually mined and can be easily separated form their
substrates. The mean compositions of Fe, Mn, P, Co, Cu, Ni, and Pt for bulk crusts normalized
for adsorbed water are 22.1%, 21.5%, 0.52%, 0.43%, 0.11%, 0.39%, and 223 ppb, respectively
(Table 14). These concentrations are lower than their regional mean concentrations (including
adsorbed water), except for Fe, which is much higher. Also Mo and Cr have higher
concentrations than their regional means.

Hydrothermal Deposits

Submetallic stratiform layers show a strong fractionation between Fe and Mn, with a mean
Mn/Fe ratio of 20.4 (Table 15); Mn contents are as high as 49% (Table 12). Trace metal contents
are also very high, with, in decreasing abundance in ppm: Ni (4119), Ba (2843), Cu (2403), Zn
(1477), Sr (780), V (487), Co (410), Cr (402), and Mo (297). Lead is relatively low (80 ppm).
These high trace metal contents contrast with other marine hydrothermal manganese deposits,
where commonly only one or two trace metals are enriched, such as Mo or Zn (Table 17; Hein,
Kang, et al., 1990). Low trace metal contents have commonly been used as a criterion to
distinguish hydrothermal from hydrogenetic and hydrogenous Mn deposits. The Yap arc deposits
show that this criterion may not always be applicable. The types of rocks leached by the
hydrothermal fluids, temperatures of the fluids, and the precipitation of proximal sulfides at depth
determine the concentration and types of trace metals that accumulate in the distal hydrothermal Mn
deposits. The trace metals indicate that the mineralizing fluids were relatively hot (high Co), that
serpentinites and mafic igneous rocks (high Cr, Ni, Cu, Zn) and to a lesser extent intermediate to
silicic igneous rocks (high Mo, V) were leached, and that little sulfide was precipitated at depth
(high Cu and Zn). Compared with similar deposits from other volcanic arcs, Co, Cu, Ni, Cr, and
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Pt are enriched from one to two orders of magnitude in the Yap arc deposits (Table 17); only Mo is
relatively depleted. Iron, Mn, P, Al, and other elements fall within the range of other volcanic arc
hydrothermal Mn deposits. On the Bonatti et al. (1972) diagram, the statiform deposits fall within
the hydrothermal field at the Mn apex (Fig. 92). This contrasts with deposits from the Mariana
-and Tonga arcs, where the stratiform deposits plot predominantly in the hydrothermal field along
the base of the triangle (Hein et al., 1987b, 1990b).

Iron and Mn are not strongly fractionated in the Fe+sMn cemented sandstones (Tables 12,
15), unlike similar deposits from the Mariana arc, where is two to three times enriched over Fe
(Table 17; Hein et al., 1987b). Silicon (18%), Mg (13%), Ni (1400 ppm), and Cr (8250 ppm) are
strongly enriched in the Yap arc deposits. The high Ni and Cr indicate the presence of Ni- and Cr-
rich grains in the sandstone and/or leaching of serpentinites and incorporation of these metals in the
Fe-Mn cement. The high Si and Mg reflect the detrital component. Normalization of the
composition of the sandstone for the detrital fraction yields a Fe-Mn oxide composition much
different from that of the stratiform layers, indicating that different fluids or different stages in the
evolution of a single hydrothermal fluid produced the s;réi(tifonn layers and sandstone cement.
Even though the bulk compositions of the Fe-Mn cemented sandstones plot within the crust field
on the Bonatti et al. (1972) diegram, the cements are clearly of hydrothermal origin.

Platinum Group Elements (PGEs) and Gold

We report the concentrations of Pt, Pd, Rh, Ru, Ir, and Au for 10 bulk crusts, 8 crust
layers, 2 submetallic stratiform layers, and 1 Fe-Mn cemented sandstone (Table 12). Gold is less
than its limit of detection of 10 ppb in all samples analyzed (Table 12). This is the second report of
Ru and Ir in Fe-Mn crusts (see Hein, Kang, et al., 1990 for the first report) and the first report of
Ru and Ir in hydrothermal Mn and Fe-Mn deposits.

Crusts

, PGEs in bulk crusts and crust layers from FSM| show significant enrichments over
lithospheric and seawater abundances, but not over solar system abundances (mean composition of
C1 chondntes) Relative to the lithosphere (Parthé and Crocket, 1978) the mean composition of
bulk crusts is enriched in Pt, Ru, Rh, and Ir by 84, 40, 30, and 10 times, respectively, whereas Pd
and probably Au concentrations are depleted by 2 to about 4 times. The enrichments of PGEs in
the crusts are about the same if the PGE data for substrate rocks from the Yap arc (Table 10) are
used. Ruthenium, Ir, Pt, Pd and Au are enriched over surface seawater (Hodge et al., 1986;
Goldberg, 1987) by about 8 x 106, 3 x 106, 2 x 106, 9 x 104, and 3 x 104 times, respectively (Fig.
93b). Most of these metals may increase in seawater with increasing water depth, so at about 1500
to 2000 m water depth, where many of the crusts formed, the enrichment factors may be less by as
much as one-half (Hodge et al., 1986; Goldberg, 1987). However, Colodner et al. (1991) found
no increase in Pt with increasing water depth and determined a mean Pt concentration in seawater
of 260 fM (standard deviation of 70 fM). This seawater concentration would increase the
enrichment of Pt in the crusts over seawater by an additional 9 x 105 times. The concentration of
Rh in seawater has not been reported in the literature. However, based on the ratios of PGEs in
Fe-Mn crusts and seawater, Hein, Kang, et al. (1990) suggested that 6 pg/l may closely
approximate its seawater concentration. Ratios of PGEs determined here and those from Hein,
Kang, et al. (1990) suggest that Rh concentrations in seawater may fall between about 2.5 and 12
pg/l in the 1500-3000 m water depth range. Ruthenium shows a positive anomaly and Pd and
possibly Au large negative anomalies on a seawater no; i i
closely comparable to that for crusts from the Marshall Islands (Hein, Kang, et al., 1990).

Mean concentrations of Pd, Au, Ir, Ru, Rh, and Pt in the solar system (equivalent to C1
chondrites; Anders and Ebihara, 1982) are enriched relative to bulk Fe-Mn crusts by 330, 139,
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117, 45, 11, and 6 times, respectively (Fig. 93a). Palladium and possibly Au show negative
anomalies on a plot normalized to solar system abundances (Fig. 93a). This trend is similar to that
for crusts from the Marshall Islands, but the Marshall Islands crusts show a negative Ru anomaly.

The highest Pt, Rh, and Ir concentrations occur in the inner layers of crust D1-8 (Table
12). The inner half of crust D19-19 also shows strong enrichments in these metals relative to the
outer half. Enrichment of these metals in the inner parts is common for central Pacific crusts. The
highest Pd and Ru concentrations occur in crusts from the Yap and Mariana arcs as do elements
indicative of clastic input.

Comparisons of the ratios of each PGE to Ir and Pt for crusts, seawater, the lithosphere,
and the solar system indicate that Pt, Ir, and probably Rh are derived predominantly from seawater
and that Pd, and to a lesser extent Ru, are derived from both seawater and clastic debris. The
extraterrestrial component (meteorite debris) in the bulk crusts must be very small, certainly no
more than about 15% of the PGEs could have been derived from an extraterrestrial source.
However, meteorite debris may be concentrated locally in various horizons or layers in the crusts
by formation of dissolution unconformities, or by proximity of the crust to meteorite fallout during
formation of the layer. These localized extraterrestrial debris-rich horizons, however, do not
significantly alter the overall hydrogenetic signature of the crusts. A similar result was found for
PGEs in crusts from the Marshall Islands (Hein, Kang, et al., 1990).

Hydrothermal Deposits

All of the PGEs except Pd are more enriched in crusts than they are in hydrothermal
stratabound deposits (Tables 12-15). Ruthenium and Pd are also more enriched in the Fe-Mn
cemented sandstones than they are in the submetallic stratiform deposits. In addition, the seawater
and solar system normalized patterns (Fig. 94b) are comparable to those of crusts except that the
negative Pd anomaly is less pronounced for the hydrothermal deposits. These relationships
support the idea derived from the crust data that Pt, Rh, and Ir are derived predominantly from
seawater and that Pd, and to a lesser extent Ru, are derived from seawater and clastic debris. Also,
the mineralizing fluid for the hydrothermal deposits must have been chiefly seawater. The PGE
ratios indicate that Pt in hydrothermal deposits, as compared to crusts, is enriched relative to the
other PGEs (except Pd) in decreasing order Ir, Rh, and Ru. This indicates that Pt in the
hydrothermal deposits partly derives from hydrothermal processes, probably from leaching of
ultramafic rocks.

Submetallic stratiform Mn deposits are enriched over seawater concentrations of Ru, Pt, Ir,
Rh, and Pd by 2 x 106, 7 x 105, 6 x 105, 5 x 105, and 1.5 x 105 times, respectively. The PGEs
are also enriched over their lithospheric abundances by 2 to 34 times, except for Pd which is
slightly depleted.

Rare Earth Elements (REEs)

Twenty-one samples, 8 bulk crusts, 8 crust layers, 4 submetallic stratiform Mn layers, and
1 Fe-Mn cemented sandstone were analyzed for REEs (Table 18).
Crusts

For bulk crusts, YREEs ranges from 0.16% to 0.10%, with a mean of 0.13%. About the
same range is found for crust layers (Table 18). For the six layers of crust D1-8, the individual
REESs have their highest concentrations in the outermost layer, except for Ce, which is highest at

the center. The second highest contents for La, Ho, Er, Tm, and Yb occur in the innermost layer;
for the other REEs, the second through fourth outer layers have uniform concentrations for each
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respective element that are somewhat depleted relative to the outermost layer of highest
concentrations. For the two layers of crust D19-19, the outer half has the highest concentration of
all the REEs except Ce.

Chondrite-normalized REE patterns (Haskin et al.; 1968) are shown in Figures 95-100.
Different REEs are enriched in crusts from about 100 to 1100 times over chondrites and vary over

a narrow range (Fig. 95). Most of the chondrite-normalized
[Fe-Mn oxyhydroxide crusts and nodules (Piper, 1974; Elder
al., 1988, 1990a), with heavy REE (HREE) depletion, 1
positive Gd anomaly (the occurrence of the Gd anomaly has
al., 1988). However, unlike typical crusts and nodule
pronounced positive Ce anomaly, but rather either a smal
'(Table 18; Figs. 95-100). Twenty-one percent of the crust
located just to the northeast also have similar Ce anomaly
‘Crusts that formed farther to the east in the central Pacific 4
'Ce anomaly variations are related to geographic position an
'the water mass in which the crusts formed. The chondrite-

patterns for FSM crusts are typical of
field et al., 1981; Aplin, 1984; Hein et
1iearly flat HREE pattern, and small
been reported only for crusts; Hein et
s, crusts from FSM do not have a
I positive or small negative anomaly
s analyzed from the Marshall Islands
y patterns (Hein, Kang, et al., 1990).
111 have positive Ce anomalies. These
the associated oxidation potential of
ormalized patterns have an aspect in

common with seawater (Gd anomaly), another opposite|to seawater (HREE depletion), and
another between these extremes (Ce anomaly). These variations in characteristics relative to the
'seawater pattern indicate that the REEs were scavenged by several different phases within the
crusts, predominantly Fe and Mn oxyhydroxides, zeolites, barite, CFA, and others, and probably
formed in seawater of different oxidation potential then crusts formed in the central Pacific.

Unlike the other REEs, soluble Ce+3 is oxidized ta insoluble Ce*+4 at the Fe-Mn surface
and fixed in predominantly Fe and Mn phases, thus creating a large positive Ce anomaly on both
shale- and chondrite-normalized plots (Goldberg et al., 1963; Piper, 1974). The Ce anomaly, Ce*
‘(normalized 2Ce/La+Pr), ranges from 0.63 to 1.32 for all ¢rust samples analyzed from the FSM
and averages 0.81 for bulk crusts. Values greater than one indicate a positive anomaly and those
less than one a negative anomaly.

Nearly all the crusts have a small positive Gd anomaly. This characteristic is similar to that
obtained for crusts from the Marshall Islands (Hein et al., 1988; Hein, Kang, et al., 1990), but
contrasts with the results for crusts from the Johnston Island EEZ in the central Pacific, where the
Gd anomaly is rarely present (Hein et al., 1990a). A small negative Tb anomaly also occurs in
patterns of some Marshall Islands crusts, but was not found here or in patterns of central Pacific
crusts. DeBaar et al. (1985) attributed the Gd/Tb fractionation in seawater to anomalous properties

The HREE depletion results from the formation of m
‘seawater than by the light REEs (LREEs), and consequently
the crusts than are the LREEs (Cantrell and Byme, 1987).

\Hydrothermal Deposits

Concentrations of REEs are consistently lower in h

Ecrusts, with YREEs ranging from 20 to 271 ppm (Table 18

associated with the shift from an exactly half-filled 4f electron shell.

ore stable complexes by the HREEs in
the HREEs are more difficult to fix in

ydrothermal deposits than they are in
; Figs. 95, 99). The Fe-Mn cemented

'sandstone has the lowest YREEs. Cerium is not the dominant REE as it is with crusts, but rather

La is predominant and Nd second in abundance.

The chondrite-normalized patterns are characterized by HREE depletion, small negative Eu

anomalies, and large negative Ce anomalies (Fig. 99). The
show the Eu anomaly, but shows several small anomalies
analytical error. Hydrothermal Mn deposits from spreading
Ce anomalies (Toth, 1980), however those from volcanic ar
only a small negative anomaly (Morten et al., 1980; Hein

et
pattern may be due to mixing of the hydrothermal Mn oxidle

Fe-Mn oxyhydroxides, to leaching of a variety of rock type
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fractionation of the REEs at depth in hydrothermal fluids of different oxidation states. If the
magnitude of the negative Ce anomaly results from fluid mixing, then the Mn deposits from the
Yap arc reflect hydrothermal components ranging from 95% to 100%; in contrast, similar deposits
from the Mariana and Tonga arcs reflect hydrothermal components ranging from 85% to 90%,
using the theoretical mixing curves of Fleet (1983). This supports the conclusion based on the
mineralogy and chemical compositions mentioned earlier that the Yap arc deposits are relatively
high-temperature proximal deposits compared to similar deposits sampled from other volcanic arcs.
The small negative Eu anomalies may reflect the types of rocks leached by the hydrothermal fluids,
such as ferromagnesian-rich rocks rather than felsic rocks.

Interelement Relationships: Correlation Coefficient Matrix

Correlation coefficient matrices were calculated from the compositions of 24 bulk crusts
(Table 19), from 6 layers of crust D1-8 (Table 20), and from 7 hydrothermal stratiform layers
(Table 21). In addition to 29 elements, all three matrices include HpO+, H2O-, CO2, LOI and the
matrix for bulk crusts also includes latitude, longitude, water depth, and crust thickness.

Crusts

For the 24 bulk crusts, statistically significant strong to moderate positive correlations are
found among the following selected elements, listed in order of decreasing significance for each
element (Table 19): Mn: Ni, Cd, Mo, As, Sr, Co; Fe: V, Zn; Si: ALK; Ca: P,Y; Co: Nj,
Mn, Pb; Ni: Mn, Mo, Co, Cd; Cu: Ba, Zn, V; V: Zn, Ba, Fe, Cu; Cr: Mg; Sr: Mo, Mn, As;
Pt: Rh, Ir, Ru; Pd: none; Ru: COy, Pt, Rh, Ir; latitude: weak correlation with Al. Latitude
also shows a moderate negative correlation with water depth and weak negative correlations with
Mn, Cd, Co, and Ce. The correlations with latitude indicate an increase in clastic debris in the
crusts formed at more northerly latitudes, in the direction of the Mariana volcanic arc, and an
increase in Mn and manganophile elements to the south. Longitude: Ba, weak with Zn, P, V,
Mo, Ti, Pb, Sr. Longitude shows weak negative correlations with Mg, Si, Al, K, Na, supporting
evidence presented earlier for an increase in clastic debris in crusts to the west, towards the Yap
volcanic arc. Correlations with longitude also indicate increasing contributions from biogenic
debris in crusts with increasing longitude, eastwardly. Manganese in crusts generally increases
and Si and Al decrease with increasing water depth. Platinum, Rh, and Ir show very weak
positive correlations with crust thickness.

All of the elements are associated with one or more mineral phase(s) in the crusts. We
interpret the correlations in Table 19 to indicate the following phases and their associated elements:
8-MnOQO3: Mn, Ni, Co, Cd, Mo, Pb, As, Sr, Ce, Ti(?); Fe oxyhydroxide: Fe, Cu(?);
aluminosilicate: Si, Al, K, Na, Mg, Ry, Pd; CFA: Ca, P, Y, COy, Sr; residual biogenic:
Ba, Zn, V, Cu, Fe, Ce, Sr, Ti(?); Cr-spinel (or other Cr-rich phase): Cr, Mg. Elements of the
3-MnO3 and residual biogenic phases vary inversely with the aluminosilicate and Cr-spinel phases.
In general, these interelement associations are similar to those determined for crusts from other
areas of the central Pacific, although regional differences do occur (Hein et al., 1990a, 1991; Hein,
Kang, et al., 1990).

Other than Ce and Ce*, the REEs are not correlated with any of the other elements,
indicating that the REEs in bulk crusts must be distributed among most of the constituent phases.
The YREEs is negatively correlated with Al and Si. Cerium and Ce* have positive correlations
with elements characteristic of the §-MnO», residual biogenic, and Fe oxyhydroxide phases. The
individual REEs and YREEs show strong positive correlations among themselves, except Ce,
which has only a strong positive correlation with YREEs and moderate correlation with La. The
statistical significance of the correlations among the REEs is generally relatively high for
correlations with Dy and generally low for correlations with La and Tm, although most correlations
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are strong. For other individual REEs, generally the strongest correlations are with the adjacent
REE:s in the periodic table, then the significance decreases through the remaining REEs of higher
and lower atomic numbers. Lanthanum, Ce, Eu, Ho, Tm, Yb, and XREEs have very weak
negative correlations with latitude, that is REEs increase toward the equator, and a very weak
positive correlation with water depth. As water depth and latitude are negatively correlated, it is
uncertain which of these control the REE distributions, although both water depth and latitude have
been shown to control the distribution of REEs in the central Pacific (Aplin, 1984; Hein, Kang, et
al., 1990; DeCarlo and McMurtry, in press).

PGEs are apparently distributed among most of the different crust phases because they are
not strongly correlated with any elements outside the Pt grqup per se. A strong association exists
among Pt-Rh-Ir and to a lesser extent Ru. This group may show a slight preference to the CFA
phase and Pt also for the aluminosilicate phase. Palladium may show a slight preference to the Cr-
spinel phase.

The six layers from crust D1-8 show interelement correlations somewhat different from
those of bulk crusts (Tables 19, 20). The differences are chiefly concerned with fewer correlations
for each element in the coefficient matrix of crust layer compositions. Fewer correlations in this
matrix partly result from the requirement of larger coefficients for the correlations to be statistically
-significant at the 95% confidence level. However, some notable differences do occur: 1) Ti and
'Cr accompany Si, Al, K, and Na in the aluminosilicate phase; a separate Cr-rich phase is not
evident. 2) The CFA phase includes Ce, Cd, and Pd. 3) The Fe oxyhydroxide phase includes As
and probably Ru. 4) The residual biogenic phase also includes Rh, Ir, Mg, and probably Pt.
These relationships are typical of hydrogenetic crusts from central Pacific Cretaceous seamounts,
and thus consistent with the location of dredge D1 on the Cretaceous Pali Seamount. The
aluminosilicate phase is typical of that derived from these seamounts, whereas the aluminosilicate
phase defined by the 24 bulk crusts is a combination of mid-plate island and volcanic arc suites. In
additilon, crust D1-8 has a well-defined CFA mineralogy, unlike crusts from many of the locations
sampled.

The REE:s in the six crust layers show many more ¢orrelations than they do in the matrix
for the 24 bulk crusts. For example, negative correlations |exist among Fe: Er, Tm, Yb; Cu: Pr,
Nd, Sm, Eu, Gd, Tb, Dy, XREEs; Zn: Dy, Ho, Er, Tm, Ybt; and Ba: Tb, Dy. These correlations
indicate that the REEs vary inversely with the residual biogenic phase, and perhaps also with the
Fe oxyhydroxide phase. Ce is positively correlated with Co and Pb, elements characteristic of the
8-MnO; phase. Among the REEs, La, Gd, Tb, and Dy have positive correlations with all the other
REEs, whereas, Pr, Nd, Sm, and Eu correlate generally only with other LREEs and Ho, Er, Tm,
and Yb only with other HREEs.

Hydrothermal Deposits

Interelement associations are much different for stratiform hydrothermal deposits compared
to bulk crusts. Statistically significant strong to moderate positive correlations are found among
the following selected elements, listed in order of decreasing significance for each element (Table
21): Fe: Ti, Ce, P, Pb, Y, Co; Co: P, Ce, Ti, Pb, Y, Fe, As; Ni: Na, K, Cu, Zn, Cd; Cu: Ni,
K, Cd; Ba: V; Pb: P, Ce, As, Fe, Ti, Co; Al: Y; K: Cd Na, Ni, Zn, Mg, Cu; Ca:Y; P: Ce,
Fe, Pb, Ti, Y, Co, As; Ti: Fe, P, Ce, Y, Pb, Co, As. Manganese, Mo, Sr, and Si do not show
significant positive correlations with other elements. Many other weak correlations and negative
correlations exist among the elements.

All of the elements are associated with one or more mineral or X ray amorphous phases
within the stratiform Mn deposits. We interpret the correlations in Table 21 to indicate the
following associations and their accompanying elements: 1) Hydrothermal Mn oxide-hydroxide
association: Mn; 2) hydrothermal Fe oxide-hydroxide association: Fe, Ti, Ce, P, Pb, Y, As, Co;
3) hydrothermally leached elements that do not covary with either Mn or Fe: Zn, Cd, Ni, Cu, Mo,
K, Na; this group of elements are probably associated, at least in part, with Mn oxide phase (see
next section on Q-mode factor analysis); 4) aluminosilicate phase: Si, Al, Mg, Ti, Ca, Y; 5) Cr-
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spinel or other Cr-rich phase derived from leaching of serpentinite: Cr, Mg; and 6).
hydrothermally leached biogenic component of sediment: Ba, Sr, V, CO2. These element
associations can be compared with the dominant mean oxide composition of 64.4% MnO; and
2.9% Fe,03; aluminosilicate-related oxides make up about 17% and water makes up 13.6% of the
deposits (Table 15). None of the elements increase with increasing Mn, but many of them show a
moderate to weak negative correlation with Mn, especially those elements associated with the Fe
and aluminosilicate phases.

The HREESs, YREEs, and Ce* have strong positive correlations and the LREEs weak
positive correlations with Fe. The REEs also have positive correlations with elements associated
with the hydrothermal Fe oxide phase (number 2 above), including Ti, P, Co, Pb, and As. This
indicates that the REEs are also associated primarily with the Fe phase. The REEs also have
positive correlations among themselves, with several general patterns evident in the distribution of
the level of statistical significance. Cerium has very low (the lowest among the REEs) or no
statistical correlation with the other REEs. The statistical significance of the correlations for La and
Pr decrease going to REEs of higher atomic numbers, then remain constant at relatively low values
for the heaviest REEs; Yb has the opposite pattern. Gadolinium correlations decrease in
significance in a V-shaped pattern going to REEs of lower and higher atomic numbers.
Neodymium, Sm, Eu, Tb, and Dy correlations all decrease in significance going to REEs of lower
and higher atomic numbers, but the correlations going to higher atomic numbers become constant
at relatively moderate to low values for correlations with the heaviest REEs; Ho, Er, and Tm show
the opposite pattern. These are very similar to the inter-REE correlation patterns found for crusts.

Grouping of Elements: Q-Mode Factor Analysis

Q-mode factor analysis was completed for the 24 bulk crusts, 6 layers of crust D1-8, and 7
hydrothermal stratiform layers (Figs. 101-105).

Crusts

The elements grouped by Q-mode factor analysis for bulk crusts can be assigned to five of
the six groups interpreted from the correlation coefficient matrix. Q-mode does not distinguish an
Fe oxyhydroxide factor. The five factors are interpreted to be the following (elements added or
omitted compared to those grouped by interpretation of the correlation coefficient matrix are in
parentheses): 8-MnOj: Co, Ni, Cd, Mo, Mn, As, Pb (Fig. 101) (Sr and Ti omitted);
aluminosilicate: Al, Si, K, Na, Mg (Fig. 101) (Ru and Pd were not included in the Q-mode
analysis); residual biogenic: Cu, Ba, Zn, V, Ce, Ti, Fe, Pb (Fig. 101) (Pb added, Sr omitted);
CFA: CO,, Ca, P, Y (Fig. 102) (Sr omitted); Cr-spinel: Cr, Mg, As (Fig. 102) (As added).
Overall, the two different analyses produce closely comparable results. Nearly 68% of the
\{ggi;mcc in the data set is accounted for by the 8-MnO; and aluminosilicate factors (Figs. 101,

Four factors were determined for the six layers of crust D1-8, which account for 99.7% of
the data set (Fig. 103). These factors are interpreted to represent the following crust phases: 8-
MnO3: Co, Pb, Mn, Mo, Ni, As, which differs from bulk crusts from FSM only by the omission
of Cd; aluminosilicate: Cr, Al, Ti, Si, K, Na, which includes Cr in this detrital phase rather
than producing a separate Cr-spinel detrital phase as for bulk crusts; this factor also differs from
bulk crusts by including Ti; residual biogenic: Cu, As, Ba, Zn, Fe, Mo, V, which differs from
bulk crusts by omission of Ti and Ce and addition of As and Mo; CFA:P, Ca, CO,, Y, Ce, Ni,
Cd, Mn, Sr, Cu, which differs from the bulk crusts from FSM by addition of the last five elements
and from bulk crusts from the central Pacific by addition of Ni, Cd, and Mn, typically
manganophile elements. Why these elements are grouped with those typical of the CFA phase is
uncertain, but may be related to preferential replacement of the Fe oxyhydroxide phase by CFA in
the inner layers of the crust.
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Hydrothermal Deposits

The elements grouped by Q-mode factor analysis for'submetallic stratiform Mn oxide layers
can be assigned to five of the six groups interpreted from the correlation coefficient matrix (Figs.
104, 105). The only difference in the groupings is that the Mn oxide phase and hydrothermally
leached elements that do not covary with either Mn or Fe are grouped together by Q-mode analysis
and are interpreted to represent the Mn oxide phase. In contrast to crusts, most elements occur in
more than one factor and Mg and Al occur in three of the five Q-mode factors (Figs. 104, 105).
The five factors are interpreted to represent: hydrothermal Mn oxide: Zn, Cd, Na, K, Ni, Mo,
Mg, Cu, Mn, Ca (Fig. 104), which adds Mg and Ca to the two phases interpreted from correlation
coefficients; hydrothermal Fe oxide: Ce, Pb, Fe, Ti, P, Co, CO3, Y, As, Al, Cu (Fig. 104),
which includes Al and Cu in contrast to the group interpreted from the correlation matrix;
hydrothermally leached biogenic debris: Si, Sr, COp, Mn, Ca, Ba, V (Fig. 104), which
adds Si, Mn, and Ca to the group derived from the correlation matrix; this factor represents

leaching of biogenic carbonate, silica, and probably org
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platinum from Fe-Mn crusts, 2) epithermal gold from veins and shear zone breccias on the Yap

atiform Mn oxide deposits on the Yap

arc, and 4) nickel and chromium from Fe-Mn cemented san

dstones from the Yap arc. Significant

accumulations of phosphorite were not found. The small amount of data and samples collected
within the vast EEZ of the FSM during this short cruise are not enough to make resource
assessments for the deposit types listed. Several additional cruises would be needed to delineate
the variety and general distributions of the mineral deposits that occur in the FSM EEZ. During
this short cruise, new marine mineral deposit types were [discovered including chromium-rich
hydrothermal deposits, offshore epithermal vein systems, nickel- and copper-rich hydrothermal
manganese deposits, and a seamount nodule field consisting of nodules with internal structures like
‘those found on abyssal plains. All of these new discoveries have important resource implications.
In addition, the first deep-sea skarn deposits were discovered. A variety of ores are known to
form as skarns, suggesting that the areas where skarns were found warrant further investigations.
We consider the FSM EEZ as having a moderate potential for Co-rich crusts (Table 22)
based on the limited information acquired here and the eleven criteria developed for the exploration
for and exploitation of Co-rich crusts (Hein et al., 1988, 1991). The commonly cited cut off grade

for potential economic development is 0.8% cobalt. On

'from FSM have relatively low mean concentrations of cobalt (0.43%) and phosphorous (0.52%)

and moderate concentrations of manganese (21.5%), n
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the Marshall Islands (Hein, Kang, et al., 1990). Because the mining of crusts from the rugged
flanks and summit of seamounts and ridges will be a difficult endeavor, crust thickness (tonnage)
may turn out to be a more important factor in economic and site selection considerations than
grade. However, surveys within FSM have not been extensive enough to delineate the distribution
of crust thicknesses or grade. Only two of the more than 12 Cretaceous seamounts that occur in
the FSM EEZ have been sampled. The seamount that perhaps offers the greatest potential is
located north of Kosrae at the boundary of the EEZ, which has subdued topography, large size,
and occurs near seamounts known to host thick crusts. One favorable aspect of Pali Seamount
deposits is that Fe-Mn nodules are abundant. In addition, the nodules have small nuclei like
abyssal nodules, rather than large rock nuclei like most seamount nodules. Consequently, the
crust component (potential ore) dominates the rock component. It is well known that the mining of
nodules is technologically much less complex than the mining of crusts and mining systems for
nodules are presently available. The nodules also have higher mean nickel (0.47%) and copper
(0.13%) grades compared to their means for crusts, but an identical mean cobalt content (0.43%).
Gold occurs in epithermal quartz veins and mineralized breccias on the islands of Yap and
Palau. The gold is very fine grained (up to 20 pum), occurs as native gold, electrum, and gold-
silver telluride, and is concentrated up to 13 ppm (Rytuba and Miller, 1990). It is possible that
epithermal gold deposits also occur on the submerged portions of the Palau and Yap arcs, and we
chose our dredge sites on the Yap arc with this in mind. Remarkably, two of the six dredges taken
on the Yap arc contained vein quartz, but none of the vein quartz was mineralized. Breccia and
hydrothermally altered siltstone associated with the vein quartz in dredge D8 do contain somewhat
elevated gold contents of 6 ppb and 3 ppb, respectively. Recovery of the appropriate host rocks
and slightly elevated gold contents in associated rocks indicate that additional surveys are
warranted. The most serious problem for offshore exploration for epithermal gold is the poor
quality of available bathymetric, geologic, and structural maps of the Yap arc. This makes it
difficult to choose dredge sites where epithermal gold deposits are most likely to be recovered.
Detailed offshore mapping should greatly enhance the results of future exploration. Even if rich
deposits were found in the areas sampled here, they would offer only a long term resource
potential because of the significant water depths involved. Exploration in more near-shore
environments might identify more viable deposits with a shorter term resource potential.
Hydrothermal Mn deposits were recovered in only one dredge, although they are common
in other volcanic arcs. However, the Yap arc hydrothermal deposits are unique in their high trace
metal contents, especially the stratiform deposits with 0.45% nickel, 0.26% copper, 0.16% zinc,
0.04% cobalt, and 0.04% chromium and high but typical contents of manganese (44.2%), barium
(0.31%), molybdenum (0.03%), and vanadium (0.05%). The Fe-Mn cemented sandstones are
also remarkably high in chromium (0.86%) and moderately high in nickel (0.15%). These high
metal contents contrast with those that occur in deposits from the Tonga arc and Lau back-arc
basin, which have high trace metal contents for titanium (0.14%), strontium (0.13%),
molybdenum (0.15%), and vanadium (0.15%). However, not more than one of these trace metals
is concentrated in the Mn deposits from any one location (Hein et al., 1990b). Even though the
Yap arc hydrothermal deposits are strongly enriched in manganese and other economically and
strategically important trace metals, their distribution and bulk tonnage are unknown. Detailed
mapping and sampling are required to delineate the extent and grade of these deposits. If the
tonnage and grade were good, these deposits would offer only a long term resource potential
because of the water depths and remote location. This is especially true for the sandstones with
high chromium contents (maximum 1.16%, Table 14) because chromium resources in layered
ultramafic intrusions on land are relatively abundant and high grade (DeYoung et al., 1984).

SUMMARY AND CONCLUSIONS
1. The distributions of ridges, troughs, faults, and rock types show that a complex

geologic and tectonic evolution of plate boundaries has taken place in the western EEZ of the FSM.
Western Caroline Ridge may represent a system of small spreading centers and long transform
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faults that originated in the Oligocene, and is presently impinging on the Yap arc to the west. The
Yap arc is an Oligocene(?) and Neogene volcanic arc composed of serpentinite and metamorphic
and igneous rocks. Quaternary hydrothermal activity occurred on the central summit region of the
arc. Rocks recovered from the western end of the Caroline ridge are deformed and sheared,
presumable from the collision of the ridge with the arc; reefal limestones from that same area are
strongly recrystallized.

2. The first occurrences of deep-sea skarn deposits were found. They were recovered
from Caroline Ridge and are composed of vesuvianite and garnet. The skarns probably formed at
about 500°C when high-level magmas were intruded into limestones on the ridge. As ore deposits
are commonly associated with skarns on land, further exploration for skarn ores is warranted in the
FSM EEZ.

3. Metamorphic rocks were recovered from Caroline Ridge for the first time, indicating
that the ridge has been subjected to significant tectonic or deformational stresses. Rocks in places
on the ridge were also strongly altered by hydrothermal fluids.

4. Hydrothermal stratiform Mn and stratabound Fe-Mn cemented sandstone were
recovered from the central Yap arc. The deposits are unique in that they have high trace metal
contents, especially, Ni, Ba, Cu, Zn, Sr, V, Co, Cr, and Mo. Chromium in the Fe-Mn cemented
sandstones reaches a maximum of 1.16%. These deposits also have a unique mineral composition
‘and are the subject of the first reported occurrence of marine hydrothermal manganese composed of
pyrolusite; they are also composed of todorokite and birnessite. The unique composition of these
deposits results from the types of rocks leached by the hydrpthermal fluids, the temperature of the
fluid, and the paucity of polymetallic sulfides deeper |in the hydrothermal system. REE
compositions and chondrite-normalized patterns, mineralogy, and chemical compositions indicate
that the Yap arc deposits are relatively high-temperature proximal deposits compared to similar
‘deposits sampled from other volcanic arcs.

5. Co-rich Fe-Mn crusts occur throughout the FSM EEZ and are thickest on the

Cretaceous Pali Seamount in the eastern part of the EEZ. Trace metals are lower than they are in
crusts from other regions of the central Pacific. However, an Fe-Mn oxyhydroxide nodule field on
Pali Seamount offers a greater potential resource than the crusts. Only two of the more than twelve
Cretaceous seamounts that occur in the FSM EEZ have been sampled, and more field work is
rcqu1rcd to determine the distribution and grade of crusts in the FSM.
‘ 6. Q- mode factor analysis and correlation coefficients indicate that bulk crusts are
‘composed of six phases with characteristic associated elements: 5MnOj: Co, Ni, Cd, Mo, Mn,
As, Pb; Fe oxyhydroxide: Fe, Cu, As; aluminosilicate: Al, Si, K, Na, Mg, Ru, Pd; residual
blogemc Cu, Ba, Zn, V, Ce, Ti, Fe, Pb; CFA: COp, Ca, P, Y; and Cr-spinel: Cr, Mn, As.

7. Many of the phascs that make up the hydrothermal deposits and crusts are similar, but
the elements that belong to the various phases may differ. Notable examples include Co and Pb,
which are invariably part of the -MnO phase in crusts in|contrast to being part of the Fe oxide
phase in hydrothermal deposits; phosphorous makes up part|of the CFA phase in crusts and the Fe
.oxide phase in hydrothermal deposits. On the other hand, many of the elements are associated
‘with similar phases in crusts and hydrothermal deposits. For example, Zn, Cd, Ni, and Mo are
associated with Mn in both deposit types; Cu and As are asgociated with Fe in both deposit types;
and Sr, Ca, and V are associated with a biogenic phase in both deposit types.
| 8. The PGEs (Pt, Rh, Pd, Ru, and Ir) in bulk crusts show significant enrichments over
their lithospheric averages and over seawater abundances. PGE ratios indicate that most of the P,
Ir, and Rh are derived from seawater and that Pd, and to a lesser extent Ru, are derived from
seawater and clastic debris. In the hydrothermal Mn dcposi#s, some Pt derives from hydrothermal
sources, probably from leaching of ultramafic rocks.

9. YRREs ranges from 0.10-0.16% for bulk crusts., Chondrite-normalized REE patterns
do not show the typical large positive Ce anomaly, but rather show a small positive or small
negative Ce anomaly, probably reflecting redox conditions of the water column. XREEs ranges
from 20-271 ppm for hydrothermal Mn deposits. Large negative Ce and small negative Eu
anomalies characterize the chrondrite-normalized REE patterns. The Eu anomalies may reflect the
types of rocks leached by the hydrothermal fluids, such as ferromagnesian-rich rocks rather than
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felsic rocks. The Ce anomalies indicate that the stratiform deposits formed from fluids with a 95-
100% hydrothermal component and 0-5% hydrogenetic component.

10. Phosphorites and CFA mineralization are not common in the FSM as they are in the
adjacent EEZ of the Marshall Islands.

11. Oxygen content of the seawater may influence the composition of Fe-Mn crusts,
especially in regards to redox sensitive elements. Oxygen contents decrease to the south and east
in the area studied, thereby raising the top boundary of oxygen-minimum zone in those areas.

12. Vein quartz and cataclastic breccias were recovered in dredges from the Yap arc. The
breccia is enriched in gold relative to MORB, although mineralization comparable to that on islands
of Yap and Palau was not found. However, additional surveys for offshore gold are warranted
after good bathymetric, geologic, and structural maps are made of the offshore areas.
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Table 1. Scientific personnel on R.V. Farnella cruise F11-90-CP

James R. Hein Chief Scientist USGS!
Jung-Ho Ahn Chief Scientist KORDI2
Michael E. Boyle Electronics technician USGS
Henry Chezar Photographer USGS
Shawn V. Dadisman Geologist USGS
Aurelio P. Joab Observer FSM3
Yong Joo Marine technician KORDI
Moon-Young Jung Resource analyst KORDI
Han-Joon Kim Geophysicist KORDI
Suk-Ki Kim Ships captain KORDI
Kaye L. Kinoshita Geologist USGS
Walter P. Olson Marine technician USGS
Dong-Won Park Electronics technician KORDI
LedaBeth Gray Geologist USGS
Ransome W. Rideout Marine technician USGS
Marjorie S. Schulz Geologist USGS
Virginia K. Smith Geologist USGS
Juliet C. Wong Geologist USGS
Sang-Ok Yoo Geologist KORDI
Suk-Hoon Yoon Geologist KORDI

1United States Geological Survey; 2Korea Ocean Research and Development Institute;

3Federated States of Micronesia
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Table 3. Single-channel airgun and 3.5 kHz bathymetry lines for R.V. Farnella cruise

F11-90-CP

Line Location Equipment! Length (km)
01 Pali Seamount SC/bathy 54.8
02 Pali Seamount SC/bathy 24.4
03 Pali Seamount SC/bathy 52.0
04 Namonuito Guyot SC/bathy 93.2
05 Namonuito Guyot SC/bathy 45.8
06 Namonuito Guyot SC/bathy 60.6
07 Tarang Bank bathy 25.6
08 ~Caroline Ridge-Sorol Trough SC/bathy 225.4
09 Caroline Ridge-Sorol Trough SC/bathy 287.1
10 Caroline Ridge-Sorol Trough SC/bathy 114.5
11 Caroline Ridge-Sorol Trough SC/bathy 39.8
12 Caroline Ridge-Sorol Trough SC/bathy 161.9
13 Caroline Ridge SC/bathy 179.6
14 Caroline Ridge SC/bathy 63.2
15 Yap trench-arc SC/bathy 223.9
16 North Yap arc SC/bathy 187.2
17 Mariana-Yap arcs juncture SC/bathy 23.9
18 Mariana-Yap arcs juncture SC/bathy 29.0
19 Hunter Bank bathy 25.6
20 North Ngulu Ridge bathy 50.0
21 Sorol Guyot SC/bathy 84.5
22 Sorol Guyot SC/bathy 57.2
23 Sorol Guyot SC/bathy 71.9
24 West Lanthe Bank SC/bathy 53.5
25 West Lanthe Bank SC/bathy 36.3
26 West Lanthe Bank SC/bathy 62.7
27 Condor Bank Bathy 27.9
28 Chuuk B Bathy 34.6
29 Chuuk B Bathy 23.1
30 Chuuk B Bathy 43.0
31 Chuuk B Bathy 12.4
32 Chuuk B Bathy 21.3
33 Luhk Seamount Bathy 34.1
34 Olapahd Seamount Bathy 47.3

Total - - 2577.3

SC = single-channel 195 in3 airgun; bathy = 3.5 kHz and 10 kHz bathymetry
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Table 8. Igneous rock samples being processed for analilses

Sample WR REE by Microprobe K-Ar dating
by XRF ICP-MS

D22 X X " Minerals -
D4-1c X X Minerals X?
D4-2 -- X Glass --
D6-6 X X Minerals X
D6-7 X X - X
D6-11-1 X X Glass, minerals --
D7-6-1 X X - --
D7-11-1 X X Minerals -
D7-12 X X - X?
D8-11-1 X - - X
D8-11-2,3 X X Minerals --
D8-13 X X -- --
D9-5a X X -- -
D9-7-1 X X Minerals --
D10-2A X X Minerals --
D10-2B -- - - X
D11-6-1 X X Minerals X
D11-12A X X - Minerals --
D11-13 X X . Minerals --
D13-2-1 X X ' Minerals X
D13-5 X X - --
D13-6B X X - X
D13-15 X X - --
D14-9-1 X X Minerals X?
D14-10-1 X X Minerals X?
D14-11-3 X X -- --
D15-3 X X -- --
D15-7-1 X X -- --
D15-9-1 X X Minerals --
D15-18 X X - --
D16-3-1 X X - X
D16-8-1A X X Glass, minerals X?
Di18-8-1 X X Minerals --
D18-10-1 X X -- --
D19-20-1 X X -- --
D21-1-2 X X Minerals X?
D22-5-1 X X -- X?
D22-7-1 -- -- Glass --
D22-9-1 -- -- Glass --
D24-6-1 X X Minerals X?

Whole rock (WR) chemistry by X ray fluorescence (XRF); rare earth element (REE)

chemistry by induction-coupled plasma mass spectrome:
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Table 9. X-ray diffraction mineralogy of substrate rocks from cruise F11-90-CP

Sample Majorl Moderate Minor/Trace _ Rock/Sediment
D14B-1 CFA2 -- - Phosphorite breccia
D1-6 CFA, Phillipsite -- Smectite Phosphatized altered hyaloclastite
D2-1A CFA - - Phosphorite: replaced bioclastic
limestone
D2-2 Plagioclase, pyroxene -- Magneute Basanite
D24 Phillipsite K-feldspar, magnetite Quartz, smectite Siltstone
D2-5A CFA - Calcite Phosphorite: replaced
foraminiferal limestone
D2-6 Calcite -- -- Bioclastic limestone
D3-1-1A Phillipsite K-feldspar, halite Quartz, smectite | Pale brown mudstone
D3-1-1B K-feldspar Smectite, halite quartz? Grey mudstone
D3-1-2 CFA K-feldspar, phillipsite Quartz, calcite? Pale yellow phosphatized
siltstone
D3-1-3 CFA -- K-feldspar Pale brown phosphorite:
replaced siltstone
D3-14 CFA K-feldspar, phillipsite Quartz Pale brown phosphatized
siltstone
D3-2-1A Phillipsite, CFA K-feldspar ‘Magnetite Phosphatized mudstone
D3-3-2 Pyroxene Magnetite, plagioclase | X-ray amorphous | Grey basanite
D34-1A Phillipsite Smectite, plagioclase Calcite? Siltstone
D3-5 Phillipsite Calcite, plagioclase Smectite Volcaniclastic-bioclastic pebbly
sandstone, phillipsite cemented
D3-6 Calcite - CFA? Bioclastic foramimmferal imestone
D3-8-1A - Calcite -- Phallipsite Calcite & phallipsite cement from
breccia
D4-1B Plagioclase, pyroxene - Smectite Tholeutic basalt
D4-1D Plagioclase, pyroxene | K-feldspar, smectite -- Altered glassy nind on basalt
D4-2A Pyroxene, plagioclase | Calcite, phillipsite Smectte \{f)lcaniclasﬁc-bioclasdc pebbly
siltstone
D4-2B Phillipsite, plagioclase Quartz;lsrpectiw, Pyroxene Greenish-brown layer in siltstone
calcite
D4-2C Pyroxene, phillipsite Plagioclase Smectite Basalt pebble from siltstone
D4-2D Pyroxene -- -- Black crystals 1n siltstone
D5-1-1 Aragonite Mg-calcite - Bioclastic reefal hmestone
D6-1A Smectite, plagioclase Pyroxene K-feldspar, halite | Altered tuff matrix of breccia
D6-1B Plagioclase Pyroxene Smectite Tholentic basalt clast in breccia
D6-3A “Smectite, plagioclase Pyroxene Calcite, phillipsite? | Altered waxy reworked tuff
D6-6-1 Plagioclase Pyroxene Smectite Basalt with parallel wavy fracture
D6-7-1 Plagioclase, pyroxene -- Smectite Tholentic basalt
D6-7-2 Plagioclase, pyroxene -- ~Smectite Tholentic basalt
D6-8-1 Plagioclase, pyroxene -- “Smectite Green-brown tholentic basalt
D6-10-2A | Phillipsite, K-feldspar Smectite -- Bioturbated, mottled mudstone:
pale brown mottle
D6-10-2B | Plagioclase, pyroxene Smectite - Same as 2A: dark brown mottle
D6-10-2C Plagioclase Smectite, halite Phillipsite Same as 2A: red-brown mottle
D6-10-2D Phullipsite Smectite - Same as 2A: drusy vug fill
D6-11-1 Plagioclase, pyroxene -- Smectte Vesicular tholeiitic basalt
D6-12 Calcite -- Plagioclase Foraminiferal-nannofossil ooze
D7-1 Serpentine Plagioclase, chlorite, Quartz, smectite, | Grey-blue-green pebbly
magnetite marcasite?, calcite | serpentine mud
D74 Serpentine Magnetite - Serpentinite
D7-5A Quartz, plagioclase -- Chlorite Milky vein quartz
D7-5B Quartz, plagioclase -- -- Translucent vein quartz
D7-6-1 Plagioclase Quartz, amphibole Chlorite Altered metagabbro
D7-8-1 Serpentine Magnetite - Serpentinite
D7-8-2 Serpentine -- Magnetite Serpentinite

53




D7-8-3 Serpentine -~ | - Serpentimte
D7-84 Epidote Quartz, calcite, Chlorite, analcite | Epidosite, cataclastic, quartz &
plagioclase | chlorite veins
D7-8-5 Plagioclase, quartz Amphibole Chiorte Greenschist
7-8-6 Pyroxene Chlonte -- Lavender vein fill
D7-8-7 Chlorite or Chlorite- Pyroxene, garnet -- Vein f1ll in serpentnite
serpentine mixed layer
7-11-1 Pyroxene Plagioclase, smectile -- Dark grey alkalic basalt
7-12 Plagioclase, pyroxene Amphibole Smecute Alkalic basalt
D7-13 Serpentine, magnetite -- -- Layered serpentinite-magnetite
D7-14 Smectite, plagioclase | Quartz, amphitole Analcite Green-brown reworked tuff
D8-2A Plagioclase Quartz, calcite, Smectte Grey mud
serpentine
8-4-1 Smectite - Analcite, quartz -- Greenish-brown breccia
D8-5 Plagioclase, pyroxene Analcite Amphibole, chlonte, | Cataclastic rock
smectite
D8-6 Smectite, Pyroxene Plagioclase, quartz Chlonte, analcite | Metagreywacke
D8-7-1 Plagioclase, quartz -- Chlonte Vein quartz
i| D8-8A Calcite -- Plagioclase, quartz, | Pebbly (basalt & quartz) clastic
analcite limestone
D§-11-1 Mica Pyroxene, magnetite, Chlorite Dark grey tholentic metadiabase
plagioclase,
» amphibole, smectite
Dg-11-2 Pyroxene, plagioclase Magnetite, mica, Chlonte Medum grey tholentic
smectite metadiabase
D8-11-3 Pyroxene Plagioclase, Chlonite, Smectite, quartz, | Pale grey tholelitic metadiabase
magnetite amphibole, analcite
D8-12-1 Plagioclase Quartz, pyroxene, | AnalCite, amphibole, | Hydrothermally altered siltstone
chlorite, hematite smiectite, calcite
|| D8-13 Plagioclase Pyroxene, magnetite, sm?ctite, analcite | Altered vesicular diabase
mica, Chlorite
D8-14-1 Plagioclase Quartz, calcite, Smectite Amygdaloidal basaltic andesite
chlorite
DS§-16-1 Plagioclase Amphibole Smectite Pale green mudstone
DE-16-2 Plagioclase Quartz, calcite Andlcite, chlonte, | Reddish-brown laminated
iphibole mudstone-siltstone
D8-16-3 Plagioclase Pyroxene, Quartz, Amphibole, chlonite | Grey siltstone
‘ calcite, smectite
| D9-1A Calcite -- “Smectite, halite Cement in breccia
1 D9-4-1 Plagioclase Quartz, magnetite, | Celadonite, hematite, | Hydrothermally altered breccia
smectite amphibole, calcite,
CFA?
D9-5A Plagioclase, pyroxene Mordenite eulandite lerO\;m amygdaloidal alkalic
asalt
D9-5B Mordemte -- culandite Vesicle fill 1n basalt
{ D9-6B Plagiocélﬁsg, quartz, Magnetite Smectite Vesicle fill in basalt
cite
D9-7-1 Pyroxene, plagiocase Smectite -~ Pebbly volcaniclastic sandstone
D9-11 Aragonite Calcite -- Halimeda clastic limestone
D9-12 Calcite Aragonite - Clastic limestone
D10-2A Amphibole, prehnite | pyroxene, plagioclase, -- Amphibolite clast from clastic
serpentine, chlorite ; limestone
D10-2B Calcite Amphibole Plagioclase, K- Pebbly clastic limestone
feldspar, serpentine
D10-3 Calcite -- Amphibole Recrystallize coral fragments
D10-5 Calcite, goethite -- -- silt in worm tube
D11-3A Smectite, calcite -- -- Waxy clay on shear planes in
breccia
D11-3B Phullipsite, calcite Pyroxene Smechite, plagioclase | Calcareous sandstone, phillipsite
cement
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D11-6-1 Plagioclase, smectite Pyroxene, quartz phillipsite? Altered andesite
DI11-7-1A Serpentine - - Serpenunite (was basalt?)
D11-/-1B ‘Serpentine -- -- ‘Serpentinite (was glass rind)
D11-8-1 Serpentine Plagioclase, pyroxene Epidote? Serpentinite (was basalt)
DI11-11 Serpentine Magnette Hematite Scrplef,l)ﬁnite, dark brown (was
basalt?
D11-12-1A | Amphibole, pyroxene, -- Serpentine?, Altered metadiabase or
plagioclase magnetite? chlorite? | metagabbro
D11-12-1B | Amphibole, pyroxene | Plagioclase, chlorite | Serpentine?, magnetite | Red oxidized margin of
metadiabase
DI11-13-1 | Pyroxene, plagioclase | Magnetite, serpentine Chlonte CT{ey-:lluc metagabbro, aligned
minerals
D11-13-2A Chlonite -- Serpentine, pyroxene | Outer green-white rim of 13-1
D11-13-2B | Pyroxcne, plagioclase { Magnetite, chlorite Serpentine adjacent to 13-2A, reddish nm
D11-13-2C | Pyroxene, plagioclase | Magnette, serpentine “Chionte Grey-blue 1gneous rock, aligned
minerals, adjacent to 13-2B
D11-14-1 Phillipsite, pyroxene plagioclase, calcite smcctiteh,] magnetite, Pebbly limestone
chlorite
D11-15 Plagioclase, calcite Chlorite, quartz -- Altered dionte?
D11-18 Vesuvianite Chlorite, garnet Serpentine Skarn
D11-19 Plagioclase Pyroxene, Serpentine | Smecute, magnetite | Cataclastite
D11-20 Calcite Amphibole, halite -- Sandy, micrite limestone
D11-21 Serpentine - Calcite, halite Fracture fill 1n basalt
D11-22 Serpentine, prehmute | Chlorite, quartz, plag- Magnetite, Serpentinized greenschist
ioclase, amphibole | pumpellyite?, halite?
DI11-26 - Serpentine -- Magnetite, goethite, ?, | Serpentinute (was basalt?)
) maghemite?
D11-27-2 | Pyroxene, serpentne - Smectite Serpentimized gabbro
D13-2-1 Pyroxene, plagioclase -~ Smectitael, analcite, | Alkalic gabbro
calcite
D13-7-1 Plagioclase, pyroxene -- Olivine, magnetite? | Alkalic basalt
D13-15A | Plagioclase, pyroxene -- ~ Magnetite, smectite | Altered basalt, parallel fractures
D14-3-1 Calcite Quartz -- Bioclasuc limestone breccla
D14-7-1 Plagioclase Calcite, smectite, Analcite, pyroxene, | Reworked tutf
mordenite, anatase hematite
D14-10-1 | Pyroxene, plagioclase Smectite Laumonite? or talc? | Tholeiitic basalt
D14-12 Plagioclase Pyroxene, amphibole - Volcamiclastic breccia
D14-13-1 Phillipsite Smectite, analcite Plagioclase Brown volcaniclastic breccia
D14-14-1 Plagioclase Pyroxene, quartz, Magnetite Hydrothermally altered vesicular
smectite tholeiitic basalt
D15-3 Pyroxene, plagioclase -- Smectite Tholenuc pillow basalt
D154 Smectite, pyroxene Plagioclase - Tholentic pillow basalt
D15-5 Plagiociase, pyroxene Smectte, calcite Magneute Tholentic pillow basalt
D15-7-1 Plagioclase, pyroxene Smectite Magneute, wairakite? | Tholeutic pillow basalt
D15-8 ‘Smectte, plagioclase, -- Magnetite Basalt
pyroxene
D15-9-1 Plagioclase, pyroxene Smectite Magnetite Basalt
D15-9-2 Plagioclase, pyroxene Smectite Magneute, calcite | Basalt
D15-10-1 | Pyroxene, plagioclase -- Magnetite Tholentic basalt
D15-15-1 Yellow-green calcareous
Garnet4 Smectite, calcite - mudstone-siltstone gradational to
grey limestone; skarn deposit
D15-15-2 Calcite - K-feldspar, smectite | Red-brown limestone adjacent to
grey limestone
‘D16-2-1B | Pyroxene, plagioclase -- Smeculte, magnetite | Basalt
D16-3-1 Pyroxene, plagioclase -- Magnetite Tholeitic basalt
D16-/-1 Pyroxene, plagioclase -- Smectite Tholentic basalt
D16-8-1C Calcite, phillipsite -~ -- ‘Glassy nind on basalt
D16-9-1 Plagioclase, pyroxene -- Magneute, smectite | Tholentic basalt
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|
Smoctie, plagioclase?

chlorite, epidote

Di16-12-1 Phullipsite, calcite -- Greenish-brown calcareous
sandstone
D16-12-2 Calcite Phullipsite, smectite Analcite Qlive-green burrow 1nfilling
D16-12-3 Calcite, phillipsite -- Smectite, analcite | Yellowish burrow 1nfilling
D16-124 Calcite, smectte -- -- Dark green calcareous mudstone
D16-12-5 Phullipsite Calcite, smectite Analcile Bedded, yellow-brown,
| calcareous sandstone-siltstone
D16-13-1 Calcite -- | Phullipsite Pale brown, bioturbated
limestone
D17-2 Plagioclase, quartz Chlonite Ilmenite? pumpellyite? | Greenschist (was basalt?)
D18-5-1 Plagioclase, pyroxene | Chlorite, ':llirgphibole, Hemaute Grey-green metadiabase
epidote )
D18-6-1 Plagioclase Amphibole, pyroxene, -- Metabasalt
chlorite
D18-7-1 Chlonte, plagioclase | Pyroxene, amphibole | Magnetite, epidote? | Metadiabase
D18-8-1 Pyroxene, plagioclase | Chlorte, amphibole Magnetite, calcite | Metadiabase
D18-5-1 Plagioclase, pyroxene | Chlonte, amphibole Epidote, magnetite | Pale green metabasalt
‘D18-10-1 | Pyroxene, plagioclase | Chlorite, amphibole Magnetite, calcite | Alkalic metabasalt
| D18-11A Chlorite, epidote | Amphibole, pyroxene,| Smectite, heulandite? | Greenschust, sheared
| pyrite
D18-13A Pyroxene Plagioclase, quartz, ‘ Prehmte Whitish-pale green metabasalt

' D19-20-1 | Pyroxene, plagioclase -- Smecute, phullipsite tl?rox:m vesicular alkalic pillow
asalt
D21-1-2 Plagioclase, pyroxene -- Olivine, phillipsite Darlri brown vesicular atkalic
| basalt
D22-1 Calcite - lagioclase White sandy & pebbly limestone
D22-3 Calcite -- -~ Massive white limestone
D22-5-1 Plagioclase, pyroxene -- Ilmenite, smectute | Brown vesicular alkalic basalt
D22-7-1 Phllipsite Smectite, plagioclase Anatase? Hyaloclasute breccia
1D22-9-1 Calcite, plagioclase Pyroxene ' Smectite Volcaniclastic-bioclastic
sandstone
D22-10-1 Calcite -- Halite, plagioclase | White pebbly & sandy limestone
D23-2A Calcite -- Smectite, plagioclase | White bedded limestone
D23-2B Calcite -- Smectite, plagioclase | Pale brown limestone
D24-1 Calcite - - Clastic imestone
D24-3-1 Plagioclase, pyroxene Quartz Smectite Brown, altered basalt?
D24-5-1 CFA, smectite Hematte - Red, altered basalt?
D24-6-6 Plagioclase, pyroxene -- Smegtite, magnetite | Grey alkalic basalt

IMajor: > 25%, Moderate: > 5% to < 25 %, Minor: < 5 %

2CFA is Carbonate Fluorapatite

3All breccias are sedimentary, and most are volcaniclastic

4Garnet is probably andradite, but maybe goldmanite or uvarovite
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Table 11 . X ray diffraction mineralogy of ferromanganese and
manganese deposits from cruise F11-90-CP

Sample | Type & Interval (mm)l | §-MnO; (%)? Others (%)
Number | _
DI-1-1A Composite 8 bulk small 98 <1-CFA, <I-quartz, <I-
nodules (<30 mm diameters) plagioclase
D1-1-1B Composite 2 bulk large 95 5-CFA
nodules (60 mm diameters)
D1-8A Bulk crust (0-55) 100 -
D1-8B Crust layer (0-15) 99 1-quartz
D1-8C Crust layer (15-27) 98 2-plagioclase
D1-8D Crust layer (27-34) 100 --
DI1-8E Crust layer (34-44) 98 2-goethite, <l-quartz
D1-8F Crust layer (44-50) 98 2-goethite
D1-8G Crust layer (50-55) 95 5-CFA
DI1-9A Crust surface (<0.5) 99 ~1-calcite, <1-quartz
D1-9B Bulk crust (0-40) 100 --
D2-1B Bulk crust (0-12) 99 1-plagioclase, <1-quartz
D2-58B Bulk crust (0-23) 93 6-calcite, 1-quartz
D2-7 Bulk crust (0-20) 97 2.5-K-feldspar, <1-quartz
D3-2-1B Bulk crust (0-25) 99 1-quartz
D3-3-3 Bulk crust (0-18) 97 2-goethite, 1-quartz
D3-4-1B Bulk fossil crust (0-20) 100 -
D4-1A Bulk crust (0-8) 98 1.5-calcite, <1-quartz
D6-1C Bulk crust (0-19) 95 3-plagioclase, 2-quartz
D6-3B Bulk crust (0-17) 96 3-plagioclase, 1 quartz
D6-4A Bulk crust (0-10) 94 3-plagioclase, 3-quartz
D6-5A Bulk curst (0-33) 95 4-plagioclase, 1-quartz
D6-5B Crust layer (0-18) 92 6-plagioclase, 2-quartz
D6-5C Crust layer (18-33) 94 5-plagioclase, 1-quartz
D7-10A Bulk crust (0-15) 96 3-calcite (contamination by
infiltered sed.), 1-quartz
DI11-2A Bulk crust (0-10) >99 <1-quartz
Bulk manganiferous Birnessite, phillipsite,
D11-2B sandstone 60 todorokite, plagioclase,
pyroxene
D11-9-1 Bulk stratabound manganese ? Todorokite, birnessite
D11-9-2 Porous stratabound ? Todorokite, plagioclase,
manganese layer pyroxene, halite
D11-9-3 Steel-grey, metallic 0 100-pyrolusite
stratabound manganese layer
D11-9-4 Steel-grey stratabound 0 Pyrolusite, todorokite, <1-
manganese layer amphibole?
D11-9-5 Botryoidal, steel-grey 0? Todorokite, pyrolusite
stratabound manganese layer
D11-9-6 Bulk stratabound manganese ? Todorokite, birnessite
D11-9-7 Laminated, grey-brown ? Todorokite, birnessite
stratabound manganese
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DI11-9-9

Bulk, submetallic,
manganese crust, 3 layers

X .

Pyrolusite, todorokite

D11-9-10A Crust in 9-9 (0-1) ? Pyrolusite
Pyrolusite, todorokite,
D11-9-10B Crust in 9-9 (1-6) ?l plagioclase, pyroxene,
rancieite?
Crust in 9-9 (6-17) ? Todorokite, pyrolusite
D11-9-10C
15-serpentine, 15-phillipsite
D11-10A Manganiferous breccia 48‘ 15-plagioclase, 5-todorokite
2-calcite
D13-8A Bulk crust (0-3) 1 -~
D13-16B Bulk crust (0-3) 99 1-quartz
D19-4-1 Bulk crust (0-32) >9 1-plagioclase, <1-quartz
D19-6 Bulk crust (0-42) >9 <1-plagioclase, <1-quartz
D19-13-1 Bulk, porous, brown, side >9 <1-quartz
crust (0-35)
D19-13-2 Bulk crust (0-32) >99 <l-quartz
D19-19A Layer (0-30) 100 -
D19-19B Layer (30-52) >98 1-plagioclase, <1-quartz
D19-19C Bulk crust (0-53) 100 --
D21-1-1 Bulk crust (0-7) 98 1-plagioclase, 1-quartz
D22-6-1 Bulk crust (0-6) 98 1-plagioclase, 1-quartz

IIntervals measured from the outer surface of crusts and nodules

2Percentages were determined by using the following weighting factors relative to quartz
setat 1: 8-MnO; 75; todorokite 10; birnessite 12 (Hein et al., 1988); carbonate
fluorapatite 3.1; plagioclase 2.8; calcite 1.65; smectite 3.0; goethite 7.0; phillipsite 17.0;
illite 6.0; pyroxene 5.0; halite 2.0 (From Cook et al., 1975); the limit of detection for
each mineral falls between 0.2 and 1.0%, except the manganese minerals which are
greater, perhaps as much as 10% for 8-MnQp; apatite always refers to carbonate

fluorapatite
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Table 14. Statistics for 24 bulk Fe-Mn crusts from the Federated States of Micronesia,
data from Table 12

ELEMENT N MEAN MEDIAN SD! MIN?2 MAX3 NM#4
Fe Wt % 24 16.9 16.0 1.8 15.0 23.0 22.1
Mn 24 16.4 16.0 2.3 12.0 20.0 21.5
Mn/Fe 24 1.05 1.0 0.2 0.7 1.2 -
Si 24 4.4 4.0 1.6 2.6 9.4 5.8
Na 24 1.4 1.4 0.1 1.2 1.8 1.9
Al 24 1.1 0.9 0.6 0.5 2.7 1.4
K 24 0.45 0.43 0.09 0.35 0.70 0.59
Mg 24 0.91 0.90 0.90 0.78 1.20 1.19
Ca 24 2.3 2.1 0.7 1.7 5.2 3.0
Ti 24 0.87 0.84 0.20 0.61 1.50 1.14
P 24 0.39 0.33 0.24 0.29 1.50 0.52
H,0+ 24 8.0 8.0 1.3 5.6 10.5 10.5
H,0- 24 17.1 18.0 4.1 10.2 24.6 0.0
COy 24 0.58 0.50 0.28 0.33 1.50 0.76
LOI 24 30.8 30.7 3.5 22.5 37.3 -
Ni ppm 24 2929 2950 561 1900 3700 3857
Cu 24 680 783 350 340 1800 1063
Zn 24 572 540 137 450 1100 752
Co 24 3237 3100 1038 1500 5900 4261
Ba 24 1283 1200 380 890 2500 1691
Mo 24 330 335 67 210 440 435
Sr 24 1283 1300 124 1000 1500 1685
Ce 24 638 645 93 480 840 839
Y 24 159 150 34 120 290 208
A" 24 553 555 82 430 780 727
Pb 24 1081 1100 143 830 1400 1422
Cr 24 30 15 75 2.3 380 41
Cd 24 2.0 2.1 0.4 1.3 2.6 2.7
As 24 220 220 32 170 280 269
Pt ppb 10 167 150 52 110 260 223
Pd 10 1.7 1.5 0.7 1.0 2.6 2.2
Rh 10 12 12 3.8 6.5 17 16
Ru 10 16 15 3 13 23 21
Ir 10 4.1 4.1 1.0 2.9 5.7 5.5
Depth6 24 2467 2470 391 1945 2950 -
Thickness? 24 22 20 15 3 55 -
1Standard deviation

2Minimum

3Maximum

4Mean of hygroscopic water free data (0% H20-) for bulk crusts from Table 13; less than values were normalized
from the values of one half their respective limits of detection

SRatio of the Fe and Mn means, not a mean of the summation of ratios

6Water depth in meters

"Crust thickness in millimeters
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Table 15. Statistics for 7 stratabound manganese samples from the Federated States of
Micronesia, data from Table 12

ELEMENT N MEAN MEDIAN SD! MIN2 MAX3 NM#4
7 . 0.6 4.3 2.2
7 ) 35.0 49.0 442
7 . 8.1 72.6 -
7 . . . 0.4 8.9 3.2
7 . 1.9 . 0.7 2.4 1.9
7 0.97 0.99 . 0.47 1.40 1.06
7 0.93 0.98 ) 0.40 1.10 1.02
Mg 7 2.2 2.4 O.B 1.6 2.5 2.4
Ca 7 1.4 1.3 0. 1.2 1.7 1.5
Ti 7 0.084 0.088 0.051 0.032 0.170 0.093
P 7 0.067 0.058 0.027 0.042 0.120 0.074
H,0+* 7 8.2 9.3 2.1 4.2 10.2 9.0
H,0" 7 5.4 52 1.7 2.3 7.6 0.0
CO, 7 0.16 0.17 0.07 0.07 0.24 0.17
LOI 7 22.1 22.3 3.P 5.8 24.7 -
Ni ppm 7 4119 4500 179% 830 5800 4518
Cu 7 2403 2700 107 420 3400 2632
Zn 7 1477 1600 77 230 2400 1621
Co 7 410 340 22 180 870 450
Ba 7 2843 2900 67 2000 3800 3089
Mo 7 297 290 8 140 410 324
Sr 7 786 800 19 520 1100 851
Ces6 7 43 20 3 20 120 36
Y 7 34 32 24 48 37
\" 7 487 520 13 310 700 529
Pb 7 80 84 17 200 88
Cr 7 402 110 13 1500 436
Cd 7 40 44 4 58 44
As 7 45 40 23 69 49
Pt ppb 2 68 68 26 110 76
Pd 2 2.9 2.9 2.5 3.2 3.1
Rh 2 2.7 2.7 1.6 3.8 3.0
Ru 2 4.0 4.0 2.3 5.7 4.4
Ir 2 0.9 0.9 0.7 1.1 1.0
Depth’ 7 2290 2290 0 2290 -
1Standard deviation
2Minimum
3Maximum

4Mean of hygroscopic water free data (0% H70-) for deposits listed in Table 13

5Ratio of the Fe and Mn means, not a mean of the summation of ratios
6Less than values were normalized from values of one half their respe¢t1ve limits of detection
TWater depth in meters
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Table 16. Statistics for 2 manganiferous sandstones from the Federated States of
Micronesia, data from Table 12

ELEMENT N MEAN MEDIAN SD! MIN? MAX3 NM4
Fe Wt% 2 5.7 5.7 0.1 5.6 5.8 6.0
Mn 2 4.5 4.5 1.6 3.3 5.6 4.7
Mn/Fe 2 0.85 0.8 0.3 0.6 1.0 -
Si 2 18.0 18.0 0.3 7.8 18.2 18.8
Na 2 1.3 1.3 0.2 1.1 1.4 1.3
Al 2 3.1 3.1 0.8 25 3.6 3.2
K 2 0.70 0.70 0.37 0.44 0.96 0.74
Mg 2 13 13 2 11 14 13
Ca 2 2.1 2.1 0.3 1.9 23 2.2
Ti 2 0.1 0.13 0.01 0.12 0.14 0.14
P 2 0.03 0.03 0.00 0.03 0.03 0.03
H,O+ 2 8.2 8.2 29 6.1 10.2 8.5
H,0- 2 25 2.5 0.6 2.1 29 0.0
COz 2 0.08 0.08 0.04 0.05 0.11 0.0
LOI 2 12.0 12.0 0.9 11.3 12.6 -
Ni ppm 2 1400 1400 283 1200 1600 1461
Cu 2 141 141 98 72 210 148
Zn 2 180 180 0 180 180 188
Co 2 115 115 21 100 130 120
Ba 2 280 280 255 100 460 294
Mo 2 18 18 9 11 24 18
Sr 2 110 110 14 100 120 115
Ce6 2 ~10 ~10 0 ~10 ~10 ~10
Y 2 6 6 1 5 6 6
v 2 145 145 50 110 180 152
Pb 2 15 15 0 15 15 8
Cr 2 8250 8250 3889 5500 11000 8638
Cd 2 2.2 2.2 1.3 1.2 3.1 2.2
As 2 12 12 2 10 13 12
Pt ppd 1 7.2 7.2 - 7.2 7.2 7.6
1 29 2.9 - 2.9 2.9 3.1
Rh 1 1.4 1.4 - 1.4 1.4 1.5
Ru 1 5.5 5.5 - 5.5 5.5 5.8
Ir 1 2.6 2.6 - 2.6 2.6 2.7
Depth? 2 2290 2290 0 2290 2290 -
1Standard deviation
2Minimum
3Maximum

4Mean of hygroscopic water free data (0% H,O-) for samples listed in Table 13

SRatio of the Fe and Mn means, not a mean of the summation of ratios
6Less than values were normalized from values of one half their respective limits of detection
TWater depth in meters
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Table 22. Suggested resource potential of Co-rich crusts within the EEZ of Pacific

nations, Hawaii, and U.S. territories and possessions

Area Relative Ranking Potentiall
Republic of the Marshall Islands 1 High
Johnston Atoll 2 High
French Polynesia 3 High
Kiribati (Line & Phoenix Islands) 4 High
Hawaiian Islands 5 Medium
Federated States of Micronesia 6 Medium
Kingman-Palmyra Islands 7 Medium
Howland-Baker Islands 8 Medium
Wake Island 9 Medium
Commonwealth Northern Mariana Is. 10 Low
Jarvis Island 11 Low
Tokelau Islands 12 Low
Kiribati (Gilbert Islands) 13 Low
Republic of Palau 14 Low
Guam 15 Low
American Samoa 16 Low
1Based on 11 criteria presented by Hein et al. (1988, 1991)
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Figure 4. Trackline and Station map for Pali Seamount; bathymetry

from Chase, Seekins, and Young (1988). Bathymetry is
inaccurate, seamount consists of 2, possibly 3 peaks. D =
Dredge, CTD = Temperature-salinity-oxygen profile.
Contour interval is 500 m.
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West Caroline Ridge Bathymetry

139° 00' 140° 00' 141° 00’ 142° 00' 143° 00’ 144° 00' 145° 00’

TN T e S@ ([T
-5000
' /W\—\/ (

10° 00' ] = 10° 0(
90 00' L 90 o]0}
80 OO' o B 80 00'
70 Ool d " 70 00'
6°00" L_ , z _ _ _ 6° 00'

139° 00’ 140° 00’ 141° 00’ 142° 00" 143° 00’ 144° 00' 145° 00’

Figure 7. Bathymetry and single-channel seismic lines for west Caroline Ridge. The bathymetry
is from our seismic and transit lines and from lines obtained from the the National
Geophysical Data Center (NGDC; see Appendix 1 for all tracklines and Appendix 2 for
names of topographic features). Areas of no data were filled in with NGDC, ETOPOS.
Contour interval is 500m.









‘W O0S SI [eAINul In0ju0)) “d[goid uadAxo-Anures-axmeradwo], = 1D ‘98pI1g=Qq

.Awwaﬁv Suno X pu® ‘SuUry3ag ‘aseyd wory QQE%SRD LInounf SaIy de A - BUBLIRIA] 93U} 10} dew uornelg pue aurpyoely, ‘Of Q.szﬁm

J0ob)

.O—. OF—.

0C.L1

0€ .11

O oLl

.00 0¥} A0S -6E1 OF -6€1 0€ -6E1 02 -6€1 01 ,6E1 .00 .6€}
emm_.x.. 10 obl
|
" .O—. OFP
0005,
S
a9l sun
\/ 000¢ L 02 o1
& ﬁ 0E .11
ainyounp soly deA-euelepy
V4
Ll aun
- OFobl
00 0¥} .0S .6€} 0 .6€E1 .0€ -6€} 02 .6€} 0} 6€} .00 .6€1}

88



138° 20’ 138°0 138°40 138°50 139°00

11°20 [ \ / 11°20
S
/ North Yap Arc S 600
0
§ // N\

11010' 1 8 L 11010
Lin$16a 1 S
' 8
?
0 g
g 3
11°00' | / - 11°00

1000

o . 1 o
10°50 /3000 10°50
Line15b
10°40 - F 10°40
/2
10°30 - r 10°30
S
8
] .5
10°0 L Kilometers 10° 20

138° 20’ 138°30 . 138°40 138°50 139°00
Figure 11. Trackline and Station map for North Yap Arc; bathymetry from Chase, Seekins,

and Young (1988). D = Dredge, a and b = divisions of Lines 15 and 16. Contour
interval is 500 m.
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Figure 12. Trackline and station map for Hunter Bank, Yap Arc; bathmetry from
Chase, Seekins, and Young (1988). D = Dredge, CTD = Temperature-
salinity-oxygen profile. Contour interval is 500 m.
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Figure 16. Trackline and Station map for Fais Trough; bathymetry from Chase, Seekins, and

Young (1988). D = Dredge, CTD = Temperature-salinity-oxygen profile, b =

divisions of bathymetry line. Contour interval is 500 m.
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Figure 17. Trackline and Station map for Sorol Trough; bathymetry from Chase, Seekins, and
Young (1988). Bathymetric lines indicate that the small seamount was mislocated
and should be shifted about 5 km to the southwest. D = Dredge, a and b = Divisions
of bathymetric lines. Contour interval is 500 m.
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Figure 18. Trackline and station map for north Eauripik Rise; bathymetry

from Chase, Seekins, and Young (1988). D =Dredge,aand b =
division of bathymetry lines. Contour interval is 500 m.
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Figure 19. Trackline and station map for west Lanthe Bank; bathymetry modified from Chase,
Seekins, and Young (1988). D = Dredge, CTD = Temperature-salinity-oxygen

profile. Contour interval is 500 m.
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Figure 20. Trackline and station map for Condor Bank; bathymetry from Chase, Seekins and
Young (1988). D = Dredge, CTD = Temperature-salinity-oxygen profile.
Contour interval is 500 m.
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Figure 21. Trackline map for Chuuk B Seamount; the seamount was not
located. Bathymetry from Chase, Seekins and Young (1988).
Contour interval is 500 m.
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Figure 22. Trackline for Luhk Seamount; the scamount was
not located. Bathymetry from Chase, Seekins and
Young (1988). Contour interval is 500 m.
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Figure 23. Trackline and station map for Olapahd Seamount;

bathymetry from Chase, Seekins, and Young (1988).
D = Dredge, CTD = Temperature-salinity-oxygen
profile. Contour interval is 500 m.
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Appendix 1.

60
145°

140° 142° 144¢

Trackline map for the Caroline Ridge area. Bathymetric data used to construct Fig. 7 were obtained from this
cruise and data from the National Geophysical Data Center (NGDC): A. University of Tokyo (UT) Hakuho
Maru Cruise H4-69-SP, Chief unknown; B. Cruise U5-70-WP, Affiliation and Chief unknown; C. UT

Hakuho Maru Cruise H4-71-NP, Chief unknown; D. China Xiangyanghong 5 Cruise X2-77-CP, Chief

unknown; E. UT Umitaka Maru Cruise U1-67-SP, Chief unknown; F. Deep Sea Drilling Project (DSDP),
Glomar Challenger Cruise G7-69-NP, E.L. Winterer and W. Riedel, Chiefs; G. Lamont-Doherty Geological
Observatory (LDGO) Vema Cruise V3-77-NP, J. Yeissel, Chief, H. UT Umitaka Maru Cruise U2-64-SP,

Chief unknown; I. USGS Farnella Cruise F11-90-CP, J. Hein and Jung-Ho Ahn, Chiefs; J. LDGO Vema
Cruise V13-76-SP, Chief unknown; K. University of Hawaii (UH) Kana Keoki Cruise K3-76-SP, D. Hussong,
Chief; L. DSDP, Glomar Challenger Cruise G6-69-NP, A.G. Fischer and B.C. Heezen, Chiefs; M. Scripps
Institute of Oceanography (SIO) Thomas Wahington Cruise W5-78-NP, J. Hawkins, Chief; N. LDGO Vema
Cruise V13-71-SP, D. Kent and J. Ladd, Chiefs; 0. UH Kana Keoki Cruise K3-83-WP, E. Silver, Chief;

P. Cruise M2-89-WP, Affiliation and Chief unknown; Q. NOAA/USCGS Pioneer Cruise P1-64-NP, H.B.
Stewart, Chief; R. LDGO Vema Cruise V14-71-NP, J. Ladd, Chief; S. UH Moana Wave Cruise W7-88-CP,

S. Stahl, S. Poulos, and M. Simpson, Chiefs; T. SIO Thomas Washington Cruise W5-78-NP, J. Hawkins, Chief;
U. SIO Thomas Washington Cruise W3-76-WP, J. Reid, Chief; V. SIO Thomas Washington Cruise W4-76-WP,
J. Hawkins, Chief; W. SIO Thomas Washington Cruise W10-77-SP, E. Silver, Chief; X. SIO Thomas
Washington Cruise W5-80-SP, J. Curray and G. Moore, Chiefs; Y. SIO Thomas Washington Cruise W7-80-WP,
A. Yayanos, Chief; Z. SIO Thomas Washington Cruise W9-79-SP, E. Silver, Chief; AB. UH Mahi Cruise
M2B-70-SP, D. Hussong, Chief.

190






